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Abstract
We consider the flow of multiple particles in a Bingham fluid in an anti-plane shear
flow configuration. The limiting situation in which the internal and applied forces
balance and the fluid and particles stop flowing, that is, when the flow settles, is
formulated as finding the optimal ratio between the total variation functional and a
linear functional. The minimal value for this quotient is referred to as the critical yield
number or, in analogy to Rayleigh quotients, generalized eigenvalue. This minimum
value can in general only be attained by discontinuous, hence not physical, velocities.
However, we prove that these generalized eigenfunctions, whose jumps we refer to as
limiting yield surfaces, appear as rescaled limits of the physical velocities. Then, we
show the existence of geometrically simple minimizers. Furthermore, a numerical
method for the minimization is then considered. It is based on a nonlinear finite
difference discretization, whose consistency is proven, and a standard primal-dual
descent scheme. Finally, numerical examples show a variety of geometric solutions
exhibiting the properties discussed in the theoretical sections.
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1 Introduction

In this article, we investigate the stationary flow of particles in a Bingham fluid. Such
fluids are important examples of non-Newtonianfluids, describing for instance cement,
toothpaste, and crude oil [31]. They are characterized by two numerical quantities: a
yield stress τY that must be exceeded for strain to appear, and a fluid viscosity μ f that
describes its linear behaviour once it starts to flow (see Fig. 1).

An important property of Bingham fluid flows is the occurrence of plugs, which
are regions where the fluid moves like a rigid body. Such rigid movements occur at
positions where the stress does not exceed the yield stress.

In this paper we consider anti-plane shear flow in an infinite cylinder, where an
ensemble of inclusions move under their own weight inside a Bingham fluid of lower
density, and inwhich the gravity andviscous forces are in equilibrium [cf (6)], therefore
inducing a flow which is steady or stationary, that is, in which the velocity does not
depend on time. For such a configuration, we are interested in determining the ratio
between applied forces and the yield stress such that the Bingham fluid stops flowing
completely. This ratio is called critical yield number.

Related work To our knowledge, the first mathematical studies of critical yield
numbers were conducted by Mosolov and Miasnikov [27,28], who also considered
the anti-plane situation for flows inside a pipe. In particular, they discovered the geo-
metrical nature of the problem and related the critical yield number to what in modern
terminology is known as the Cheeger constant of the cross-section of the region con-
taining the fluid. Very similar situations appear in the modelling of the onset of
landslides [18,19,22], where non-homogeneous coefficients and different boundary
conditions arise. Two-fluid anti-plane shear flows that arise in oilfield cementing are
studied in [15,16]. Settling of particles under gravity, not necessarily in anti-plane con-
figurations is also considered in [23,30]. Finally, the previous work [17] also focuses
in the anti-plane settling problem. There, the analysis is limited to the case in which all
particles movewith the same velocity andwhere themain interest is to extract the criti-
cal yield numbers from geometric quantities. In the current work we lift this restriction
and focus on the calculations of the limiting velocities, also from a numerical point
of view. Various applications of the critical yield stress of suspensions are pointed out
in [4, Sect. 4.3]. On the numerical aspects, there are several methods available in the

Fig. 1 Relation between stress and strain in a Bingham fluid
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literature for the computation of limit loads [8] and Cheeger sets [6,7,9], and both of
these problems are closely related to ours, as we shall see below.

Structure of the paper We begin in Sect. 2 by recalling the mathematical models
describing the stationary Bingham fluid flow in an anti-plane configuration, and an
optimization formulation for determining the critical yield number.

Next, in Sect. 3 we consider a relaxed formulation of this optimization problem,
which is naturally set in spaces of functions of bounded variation, and show that the
limiting velocity profile as the flow stops is a minimizer of this relaxed problem.

In Sect. 4, as in the case of a single particle [17], we prove that there exists a
minimizer that attains only two non zero velocity values.

Finally, in Sect. 5 we present a numerical approach to compute minimizers. This
approach is based on the non-smooth convex optimization scheme of Chambolle–Pock
[10] and an upwind finite difference discretization [11]. We prove the convergence of
the discrete minimizers to continuous ones as the grid size decreases to zero. We then
use this scheme to illustrate the theoretical results of Sect. 4.

2 TheModel

The constitutive law for an incompressible Bingham fluid in three dimensions is given
by the von Mises criterion

⎧
⎪⎨

⎪⎩

σD =
(

μ f + τY

|Ev|
)

Ev if |σD| � τY ,

Ev = 0 if |σD| � τY ,

(1)

where v is its velocity (for which incompressibility implies div v = 0), and Ev =
(∇v + ∇v�)/2 is the linearized strain, ∇v ∈ R

3×3 being the Jacobian matrix of the
vector v. We denote by σD the deviatoric part of the Cauchy stress tensor σ(x, y, z) ∈
R
3×3
sym , that is

σ = σD − p Id, (2)

where p is the pressure and tr σD = 0. These equations state that as long as a certain
stress is not reached, there is no response of the fluid (see Fig. 1).

The geometry we consider consists of a Bingham fluid filling a vertical cylindrical
domain �̂ × R ⊂ R

3 and a solid inclusion �̂s × R ⊂ �̂ × R, where

�̂s =
N⋃

i=1

�̂i
s

with �̂i
s ∩ �̂

j
s = ∅ and ∂�̂ ∩ ∂�̂i

s = ∅, so that �̂s is composed of disconnected
particles that do not touch the boundary of the domain. We denote by �̂ f = �̂ \ �̂s

the portion of the domain occupied by the fluid, and by ρs, ρ f the corresponding
constant densities. We focus on a vertical stationary flow, meaning that the velocity is
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Fig. 2 Anti-plane situation: a falling cylinder, with gravity along its axis of symmetry

of the form v = ω̂(0, 0, 1)T and constant in time.Moreover, all quantities are invariant
along the vertical direction, so we can directly consider a scalar velocity ω̂ : �̂ → R

(ω̂ is the velocity of the fluid on �̂ f and of the solid in �̂s), see Fig. 2. For the rest
of the article, the differential operators denoted by ∇ and div are the two-dimensional
ones.

Additionally to incompressibility,we consider the stronger conditionof an exchange
flow problem, meaning that we require that the total flux across the horizontal slice is
zero, ˆ

�̂

ω̂ = 0. (3)

A word on this condition is required. If the cylindrical domain was closed by
a bottom fluid reservoir on which no-slip boundaries are assumed, one could use
incompressibility, the divergence theorem and the boundary conditions to obtain (3)
in any horizontal plane. In our case, while not strictly consistent with an infinite
cylinder, it is added as a modelling assumption, reflecting that the region of interest is
far away from the bottom of the 3D domain. The same approximation has been used
in previous works treating models of drilling and cementing of oil wells [14,15] and
justified experimentally in [20] with applications to magma in volcanic conduits.

In the anti-plane case, the Bingham constitutive law (1) can be written in terms of
the vector of shear stresses τ̂ = (σxz, σyz) to obtain

⎧
⎪⎨

⎪⎩

τ̂ =
(

μ f + τY

|∇ω̂|
)

∇ω̂ if τ̂ � τY ,

∇ω̂ = 0 if τ̂ � τY .

(4)

Since the material occupying the region �̂s is perfectly rigid, the corresponding con-
stitutive law is

∇ω̂ = 0 on �̂s . (5)
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Noting the decomposition of the stress tensor (2), the balance laws for the fluid and
the solid particles then write

⎧
⎪⎪⎨

⎪⎪⎩

div τ̂ = pz − ρ f g on �̂ f ,

ˆ
∂�̂i

s

τ̂ · n f + ρsg |�̂i
s | − bi = 0,

(6)

with pz the pressure gradient along the vertical direction. The second equation in
(6) expresses that for a steady fall motion, the gravity and buoyancy forces should
be in equilibrium with the shear forces exerted by the fluid on each particle [32].
The buoyancy forces bi on each solid particle should be understood as resulting from
Archimedes’ principle and originating outside the region of interest, being exerted by
the bottom reservoir of fluid. This interpretation implies that these forces are propor-
tional to the volume of the solids and the vertical difference of pressure, a fact that we
obtain as a consequence of the exchange flow condition in (9). In this equation, n f is
the exterior unit normal to ∂�̂ f , which at ∂�̂ f ∩ ∂�̂s is the interior unit normal to
∂�̂s .

These equations are complemented by the following boundary conditions: we
assume that on the boundaries of �̂, we have a no-slip boundary condition

ω̂ = 0 on ∂�̂, (7)

and similarly we assume that ω̂ is continuous across the interface ∂�̂s ,

[ω]
∂�̂s

= 0. (8)

2.1 Eigenvalue Problems

We assume that �̂ and �̂s are bounded and strongly Lipschitz, �̂s ⊂ �̂, that ∂�̂s ∩
∂�̂ = ∅ and that �̂s has finitely many connected components. Following [17,30], we
introduce the functional

F̂(ω̂,m) :=

⎧
⎪⎨

⎪⎩

μ f

2

ˆ
�̂ f

|∇ω̂|2 + τY

ˆ
�̂ f

|∇ω̂| − ρ f g
ˆ

�̂ f

ω̂ − ρs g
ˆ

�̂s

ω̂ + m
ˆ

�̂

ω̂ if ω̂ ∈ Ĥ�

+ ∞ else,

with the set of admissible velocities

Ĥ� =
{
v ∈ H1

0 (�̂)
∣
∣ ∇v = 0 in �̂s

}
.

where the argument m is a scalar multiplier for the exchange flow condition (3).
Writing the Euler–Lagrange equations in the ω̂ argument at an optimal pair for the
saddle point problem, we obtain a solution of our constitutive and balance Eqs. (4)
and (6), with
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pz ≡ m, and bi = pz |�̂i
s |. (9)

Notice that since we work in Ĥ�, the no-slip boundary condition (7) and solid consti-
tutive law (5) are automatically satisfied, and adequate testing directions are constant
on connected components of �̂s , which leads to the force balance condition in the
second part of (6). Condition (8) is implied (in an appropriate weak form) by the fact
that ω̂ ∈ H1(�̂).

Since F̂ is convex in its first argument and concave on the second, we can introduce
the integral constraint in the space, and focus on the equivalent formulation of finding
minimizers of

Ĝ�(ω̂) :=

⎧
⎪⎨

⎪⎩

μ f

2

ˆ
�̂ f

|∇ω̂|2 + τY

ˆ
�̂ f

|∇ω̂| − (ρs − ρ f ) g
ˆ

�̂s

ω̂ if ω̂ ∈ Ĥ�

+ ∞ else,

over

Ĥ� =
{

v ∈ H1
0 (�̂)

∣
∣
ˆ

�̂

v = 0, ∇v = 0 in �̂s

}

.

We proceed to simplify the dimensions in the above functional, so that we can work
with just one parameter. Assuming a given length scale L̂ , we define the buoyancy
number Y and a velocity scale ω̂0 by

Y := τY

(ρs − ρ f )gL̂
, ω̂0 := (ρs − ρ f )gL̂2

μ f
,

so that defining the rescaled velocity ω and corresponding domains by

ω(x) := ω̂(L̂x)

ω̂0
, � := �̂

L̂
, � f := �̂ f

L̂
, and �s := �̂s

L̂
, (10)

we end up with the functional

G�
Y (ω) :=

⎧
⎪⎨

⎪⎩

1

2

ˆ
� f

|∇ω|2 + Y
ˆ

� f

|∇ω| −
ˆ

�s

ω if ω ∈ H�

+ ∞ else,

(11)

to be minimized over

H� =
{

v ∈ H1
0 (�)

∣
∣
ˆ

�

v = 0, ∇v = 0 in �s

}

.

By the direct method it is easy to prove (see for instance [17]) that G�
Y has a unique

minimizer, which we denote by ωY and that corresponds to the weak solution of (3),
(4), (5), (6), (7), and (8) in physical dimensions through the scaling in (10). Now,

noticing that u �→ Y
´
� f

|∇u| − ´
�s

u is convex, and that the Gâteaux derivative of
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u �→ ´
� f

|∇u|2 at the point ωY in direction h is
´
� f

∇ωY · ∇h, differentiating in the
direction v − ωY , as done in [13, Sect. I.3.5.4] shows that for every v ∈ H�,

ˆ
� f

∇ωY · ∇(v − ωY ) + Y
ˆ

� f

|∇v| − Y
ˆ

� f

|∇ωY | �
ˆ

�s

(v − ωY ). (12)

As in [17], one can introduce

Yc := sup
ω∈H�

´
�s

ω´
�

|∇ω| (13)

and test inequality (12) with v = 0 and v = 2ωY to obtain

ˆ
�

|∇ωY |2 =
ˆ

� f

|∇ωY |2 =
ˆ

�s

ωY − Y
ˆ

� f

|∇ωY |. (14)

From this, and using the definition of Yc in (13) it follows that

ˆ
�

|∇ωY |2 �
ˆ

� f

|∇ωY |
[

sup
ω∈H�

´
�s

ω´
�

|∇ω| − Y

]

= (Yc − Y )

ˆ
� f

|∇ωY | .

The last inequality implies, thanks to the homogeneous boundary conditions on ω,
that ωY = 0 in � f as soon as Y � Yc.

3 Relaxed Problem and Physical Meaning

Wedetermine the critical yield stressYc, defined in (13) and properties of the associated
eigenfunction. The optimization problem (13) is equivalent to computing minimizers
of the functional

E(ω) :=
´
�

|∇ω|´
�s

ω
over H�. (15)

Because E might not attain a minimizer in H�, we consider a relaxed formulation on
a subset of functions of bounded variation.

3.1 Functions of BoundedVariations and Their Properties

We recall the definition of the space of functions of bounded variation and some
properties of such functions that we will use below. Proofs and further results can be
found in [1], for example.

Definition 1 Let A ⊂ R
2 be open. A function v ∈ L1(A) is said to be of bounded

variation if its distributional gradient ∇v is a Radon measure with finite mass, which
we denote by TV(v). In particular, if ∇v ∈ L1(A), then TV(v) = ´

A |∇v|. Similarly,
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for a set B with finite Lebesgue measure |B| < +∞ we define its perimeter to be the
total variation of its characteristic function 1B , that is, Per(B) = TV(1B).

Theorem 1 The space of functions of bounded variation on A, denoted BV(A), is a
Banach space when associated with the norm

‖v‖BV(A) := ‖v‖L1(A) + TV(v) .

The space of functions of bounded variation satisfies the following compactness
property [1, Theorem 3.44]:

Theorem 2 (Compactness and lower semi-continuity in BV) Let vn ∈ BV(A) be a
sequence of functions such that ‖vn‖BV(A) is bounded. Then there exists v ∈ BV(A)

for which, possibly upon taking a subsequence, we have

vn
L1−→ v.

In addition, for any sequence (wn) that converges to some w in L1,

TV(w) � lim inf TV(wn).

We frequently use the coarea and layer cake formulas:

Lemma 1 Let u ∈ BV(R2)with compact support, then the coarea formula [1,Theorem
3.40]

TV(u) =
ˆ ∞

−∞
Per(u > t) dt =

ˆ ∞

−∞
Per(u < t) dt (16)

holds. If u ∈ L1(R2) is non-negative, then we also have the layer cake formula [26,
Theorem 1.13] ˆ

R2
u =

ˆ ∞

0
|{u > t}| dt . (17)

An important role in characterizing constrained minimizers of the TV functional is
played by Cheeger sets, which we now define.

Definition 2 A set is called Cheeger set of A ⊆ R
2 if it minimizes the ratio Per(·)/| · |

among the subsets of A.

The following result is well known and has been stated for instance in [25, Proposition
3.5, iii] and [29, Proposition 3.1]:

Theorem 3 For every non-empty measurable set A ⊆ R
2 open, there exists at

least one Cheeger set, and its characteristic function minimizes the quotient u �→
TV(u)/‖u‖L1(A) in L1(A) \ {0}. Moreover, almost every level set of every minimizer
of this quotient is a Cheeger set.

Remark 1 Some sets may have more than one Cheeger set, which introduces
nonuniqueness in the minimizers of the quotient TV(·)/‖ · ‖L1(A). One example is
the set � of Fig. 6 below.
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3.2 GeneralizedMinimizers of E

Using the compactness Theorem 2, it follows that the relaxed quotient

E(ω) := TV(ω)´
�s

ω

of (15) attains a minimizer in the space

B :=
{

v ∈ BV(R2)
∣
∣
ˆ

�

v = 0, ∇v = 0 on �s, v = 0 on R
2 \ �

}

.

Note that the quotient E is invariant with respect to scalar multiplication, and we can
therefore add the constraint

 
�s

v := 1

|�s |
ˆ

�s

v = 1 (18)

to B without changing the minimal value of the functional E . Thus, the problem of
minimizing E over B is equivalent to the following problem:

Problem 1 Find a minimizer of TV over the set

BV� :=
{

v ∈ BV(R2)
∣
∣
ˆ

�

v = 0,
 

�s

v = 1, ∇v = 0 on �s, v = 0 on R
2 \ �

}

.

By using standard compactness and lower semicontinuity results in BV(R2), it is easy
to see [17] that there is at least one solution to Problem 1. In particular, we emphasize
that all the constraints above are closed with respect to the L1 topology.

Remark 2 Notice that BV� is larger than the optimization space (28) used in [17] ,
where it has been assumed that v = const. in �s . See also Sect. 5.3.

3.3 The Critical Yield Limit

We investigate the limit of ωY [the minimizer of G�
Y , defined in (11)] when Y → Yc.

For this purpose we first prove

Proposition 1 The quantity
´
� f

|∇ωY | is nonincreasing with respect to 0 � Y � YC.
In particular, it is bounded.

Proof Let Yc � Y1 > Y2 � 0. Then, from the definition (11) of ωY being a minimizer
of G�

Y it follows that

G�
Y2(ωY2) � G�

Y2(ωY1) = G�
Y1(ωY1) + (Y2 − Y1)

ˆ
� f

|∇ωY1 |,
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G�
Y1(ωY1) � G�

Y1(ωY2) = G�
Y2(ωY2) + (Y1 − Y2)

ˆ
� f

|∇ωY2 |,

and summing, we get

(Y1 − Y2)

(ˆ
� f

|∇ωY2 | −
ˆ

� f

|∇ωY1 |
)

� 0,

which implies the assertion. ��
We are now ready to investigate the convergence of ωY and its rate.

Theorem 4 For Y ↗ Yc, we have

ˆ
�

|∇ωY |2 � |� f |(Yc − Y )2. (19)

Moreover, the sequence of rescaled profiles

vY := ωY´
�

|∇ωY | (20)

converges in the sense of Theorem 2, up to possibly taking a sequence, to a solution
of Problem 1.

Proof The first part of the proof is already presented in [13, Sect. VI 8.3, Equation
(8.20)] but we reproduce it here for convenience. As before, let Yc � Y1 > Y2 � 0.
We use (12) for Y1 and v = ωY2 as well as the same inequality for Y2 and v = ωY1
and sum the inequalities obtained to get

ˆ
� f

|∇ωY1 − ∇ωY2 |2 � (Y1 − Y2)

(ˆ
� f

|∇ωY2 | − |∇ωY1 |
)

.

With Y1 = Yc and Y2 a generic Y , and since ωYc = 0, the above implies

ˆ
� f

|∇ωY |2 � (Yc − Y )

ˆ
� f

|∇ωY |. (21)

On the other hand, the Cauchy–Schwarz inequality gives

ˆ
� f

|∇ωY | � |� f |1/2
(ˆ

� f

|∇ωY |2
)1/2

.

Putting these two inequalities together, we obtain

ˆ
� f

|∇ωY |2 � |� f |1/2(Yc − Y )

(ˆ
� f

|∇ωY |2
)1/2

which leads to (19).
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Now, the associated functions vY , defined in (20), have total variation 1 and zero
mean. From Theorem 2 it follows that vY converges in L1 to some vc. Now, it follows
directly from (21) and (14) that

lim
Y→Yc

Y
´
�

|∇ωY |´
�s

ωY
= 1, (22)

and therefore, using the L1 convergence of vY , its definition (20) and that
´
�

|∇ωy | =´
� f

|∇ωy |, (22) implies

ˆ
�s

vc = lim
Y→Yc

ˆ
�s

vY = lim
Y→Yc

´
�s

ωY´
� f

|∇ωy | = Yc.

Recalling that TV(vY ) = 1, the semi-continuity of the total variation with respect to
L1 convergence implies TV(vc) � 1, which yields

Yc

ˆ
�

|∇vc| −
ˆ

�s

vc � 0,

which can be rewritten as

Yc �
´
�s

vc´
�

|∇vc|

so vc is a maximizer of v �→
´
�s

v´
� |∇v| . ��

From the above result,we see that aminimizer of the quotient
´
� |∇v|´
�s

v
can be obtained

as a limit of rescaled physical velocities, and therefore carries information about their
geometry. For this reason, we will focus on these minimizers in the following.

4 Piecewise Constant Minimizers

We prove the existence of solutions of Problem 1 with particular properties. In our
previous work [17] this problemwas considered under the assumption that the velocity
is constant in the whole �s . In the situation considered here, the physical velocity ω

is constant only on every connected component of �s , and the velocity of each solid
particle is an unknown. Therefore, the candidates of limiting profiles v over which we
optimize (belonging to BV�) also satisfy ∇v = 0 on �s .

4.1 AMinimizer with Three Values

Theorem 5 There is a solution of Problem 1 that attains only two non-zero values.
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The same result has been proved in [17] in the simpler situation when the velocities
were considered uniformly constant on the whole �s . For the proof of Theorem 5, we
proceed in two steps:

1. We prove the existence of a minimizer for Problem 1 which attains only finitely
many values. This is accomplished by convexity arguments reminiscent of slicing
by the coarea (16) and layer cake (17) formulas, but more involved.

2. When considered over functions with finitely many values, theminimization of the
total variation with integral constraints is a simple finite-dimensional optimization
problem, and standard linear programming arguments provide the result.

The core of the proof of Theorem 5 is the following lemma, that states that a
simplified version of the minimization problem can be solved with finitely many
values.

Lemma 2 Let �1 ⊂ �0 be two bounded measurable sets, ν ∈ R. Then, there exists a
minimizer of TV on the set

Aν(�0,�1) :=
{

v ∈ BV(R2)
∣
∣ v
∣
∣
R2\�0

≡ 0, v
∣
∣
�1

≡ 1,
ˆ
R2

v = ν

}

,

where the range consists of at most five values, one of them being zero.

In turn our proof of Lemma 2 is based on the following minimizing property of
level sets, which we believe could be of interest in itself.

Lemma 3 Let �0,�1, ν andAν(�0,�1) be as in Lemma 2, and u a minimizer of TV
inAν(�0,�1). Assume further that u has values only in [0, 1], and denote Es := {u >

s}. Let s0 be a Lebesgue point of s �→ Per(Es) and s �→ |Es | (these two functions
are measurable, so almost every s ∈ [0, 1] is a Lebesgue point for them). Then 1Es0
minimizes TV in A|Es0 |(�0,�1).

The proofs of these two lemmas are located after the proof of Theorem 5.

Proof of Theorem 5 Step 1. A minimizer with finite range
To begin the proof, we assume that we are given a minimizer u of the total variation

in BV�, that is, a solution of Problem 1.We represent�s by its connected components
�i

s , i = 1, . . . , N ,

�s =
N⋃

i=1

�i
s .

Since u belongs to BV�, u is constant on every �i
s , and we introduce the constants γi

such that
u
∣
∣
�i
s
= γi .

We can assume that γi � γi+1. Note that the constraint (18) reads

1
∑n

i=1 |�i
s |

N∑

i=1

γi |�i
s | = 1.
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Defining

ui := u · 1{γi<u<γi+1} + γi1{u�γi } + γi+11{u�γi+1},

we have

u =
N∑

i=1

(
ui − γi

)
.

Notice that each ui minimizes the total variation among functions with fixed integral´
�
ui , and satisfying the boundary conditions u = γi on {u � γi } and u = γi+1 on

{u � γi+1}.
As a result, the function vi := ui−γi

γi+1−γi
minimizes the total variation with constraints

vi
∣
∣
R2\{u>γi } ≡ 0, vi

∣
∣{u�γi+1} ≡ 1 and prescribed integral. Lemma 2 (applied with

�0 = {u > γi } and �1 = {u � γi+1}) shows that vi can be replaced by a five level-
set function ṽi which has total variation smaller or equal to TV(vi ). Hence ui can be
replaced by the five level-set function ũi := γi + ṽi (γi+1 − γi ) without increasing the
total variation.

Therefore, the finitely-valued function

ũ :=
N∑

i=1

(
ũi − γi

)

is again a solution of Problem 1 (the functions u and ũ coincide on�s , so the constraintffl
�s

ũ = 1 is satisfied).

Step 2. Construction of a three-valued minimizer
Step 1 provides a solution ũ of Problem 1 that reaches a finite number (denoted as

p + 1) of values. We denote its range (listed in increasing order) by

{γp− , . . . , γ−1, 0, γ1, . . . , γp+}

where p− � 0 � p+, p+ − p− = p and γi < 0 for i < 0 and γi > 0 for i > 0.
Let us now define, for i < 0, Ei := {ũ � γi } and αi := γi − γi+1 and for i > 0,

Ei := {ũ � γi } and αi := γi − γi−1. The function ũ then writes

ũ =
p+
∑

i=p−
i �=0

αi1Ei (23)

where Ei ⊂ E j whenever i < j < 0 or i > j > 0.
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We also have

TV(ũ) =
p+
∑

i=p−
i �=0

|αi |Per(Ei ),

ˆ
�

ũ =
p+
∑

i=p−
i �=0

αi |Ei |,

ˆ
�s

ũ =
p+
∑

i=p−
i �=0

αi |Es
i | (24)

where Es
i = Ei ∩ �s .

Since ũ is a solution to Problem 1, the collection (αi ) minimizes
∑

i |αi |Per(Ei )

with constraints

p+
∑

i=p−
i �=0

αi |Ei | = 0 and
p+
∑

i=p−
i �=0

αi |Es
i | = |�s |

as well as αi < 0 for i < 0 and αi > 0 for i > 0. The constraint on the sign of the
αi is made such that the formula (24) holds. Indeed, if the αi change signs, the right
hand side of (24) is only an upper bound for TV(ũ).

Introducing the vectors

a = (Per(Ep−), . . . ,Per(Ep+)),

b = (|Es
p−|, . . . , |Es

p+|),
c = (|Ep−|, . . . , |Ep+|),
x = (αp− , . . . , αp+) ,

minimizing (24) for ũ of the form (23) and with the constrained mentioned above is
reformulated into finding a minimizer of

(a, x) →
∣
∣
∣aT |x |

∣
∣
∣
�1

,

x s.t. bT x = |�s | and cT x = 0 .

Denoting by σ ∈ {−1, 1}p ⊆ R
p indexed by i ∈ {p−, . . . , p+} with σi = −1 for

i < 0 and σi = 1 for i > 0, this minimization problem can be rewritten as

min
x∈Rp+1

{
aT (σ : x) = (σ : a)T x

∣
∣ bT x = |�s |, cT x = 0, σ : x � 0

}
, (25)
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where σ : x := (x1σ1, . . . , xpσp, xp+1σp+1). The space of constraints is then a
(possibly empty) polyhedron given by the intersection of the quadrant σ : x � 0 with
the two hyperplanes cT x = 0 and bT x = |�s |. Now for a point of a polyhedron in
R

p to be a vertex, we must have that at least p constraints are active at it. Therefore,
at least p − 2 of these constraints should be of those defining the quadrant σ : x � 0,
meaning that at a vertex, at least p − 2 coefficients of x are zero.

This polyhedron could be unbounded, but since a � 0 and σ : x � 0 componen-
twise, the minimization of aT (σ : x) must have at least one solution in it. Moreover,
since it is contained in a quadrant (σ : x � 0), it clearly does not contain any line, so it
must have at least one vertex [5, Theorem 2.6]. Since the function to minimize is linear
in x , it has a minimum at one such vertex [5, Theorem 2.7]. That proves the existence
of a minimizer of (25) with at least p−2 of the (αi ) being zero. This corresponds to a
minimizer for Problem 1 which has only two level-sets with nonzero values, finishing
the proof of Theorem 5. ��

4.1.1 Proof of Lemma 2

Proof of Lemma 2 For conciseness, we denote the set Aν(�0,�1) by A. Let w be an
arbitrary minimizer of TV in A. Splitting w at 0 and 1 we can write

w = (w1+ − 1) + w(0,1) − w− (26)

with w1+ := w · 1w�1 + 1w<1, w(0,1) = w · 10�w�1 + 1w>1, and w− the usual
negative part. We see from the coarea formula that

TV(w) =
ˆ
s�0

Per(w � s) +
ˆ
0<s<1

Per(w � s) +
ˆ
s�1

Per(w � s)

= TV(w−) + TV(w(0,1)) + TV(w1+).

With this splitting, w− can be seen to be a minimizer of TV over

A− :=
{

v ∈ BV(R2)
∣
∣ v = 0 on {w > 0} ∪ R

2\�0,

ˆ
�

v =
ˆ

�

w−
}

.

By Theorem 3, almost every level set of w− is a Cheeger set of �0 \ {w > 0}, the
complement of {w > 0}∪R

2\�0. In particular, if we replace w− by
´
� w−
|C0| 1C0 , where

C0 is one such Cheeger set, the total variation doesn’t increase. Therefore, there exists
a minimizer w̃− of TV on A− that reaches only one non-zero value.

With an analogous argumentation we see that, because w1+ minimizes TV on the
set

A1+ :=
{

v ∈ BV(R2)
∣
∣ v = 1 on {w < 1},

ˆ
�

v =
ˆ

�

w1+
}

,

there exists a minimizer w̃1+ that writes

w̃1+ = 1 + ζ1C1
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where C1 is a Cheeger set of {w � 1} and ζ � 0 is a constant.
Moreover, defining

μ :=
ˆ

�

w(0,1),

w(0,1) minimizes TV on the set

A(0,1)
μ :=

{

v ∈ BV(R2)
∣
∣ v = 1 on {w � 1}, v = 0 on {w � 0} and

ˆ
�

v = μ

}

.

The remainder of the proof consists in showing that there exists a minimizer of TV
in A(0,1)

μ that attains only three values. Since w(0,1) is one of them, there exists some

minimizer of TV inA(0,1)
μ with values in [0, 1]. We denote by u a generic one. In what

follows, we denote by Es := {u > s} the level-sets of u.
Noticing that A(0,1)

μ = Aμ({w � 0}, {w � 1}), we can use Lemma 3 to obtain

that for almost every s, 1Es minimizes TV inA(0,1)
|Es | . That implies in particular that for

a.e. s, Es minimizes perimeter with fixed mass. We introduce E (1)
s the set of points of

density 1 for Es and E (0)
s the set of points of density 0 for Es , that is

E (1)
s :=

{

x ∈ �
∣
∣ lim
r→0

|Es ∩ Br (x)|
|Br (x)| = 1

}

and

E (0)
s :=

{

x ∈ �
∣
∣ lim
r→0

|Es ∩ Br (x)|
|Br (x)| = 0

}

.

Lebesgue differentiation theorem implies that E (1)
s = Es and E (0)

s = � \ Es a.e.
Now, since the level-sets are nested, the function s �→ |Es | is nonincreasing. There-

fore, there exists sμ such that

for s > sμ, |Es | � μ, and for s < sμ, |Es | � μ.

Let us now define

E+ :=
⋃

s>sμ

E (1)
s and E− :=

⋂

s<sμ

� \ E (0)
s .

We then have the following fact, to be proved below:

Claim If E± is not empty, 1E± minimizes total variation in A(0,1)
|E±| , with |E+| � μ �

|E−|.
To finish the proof of Lemma 2, we distinguish two alternatives. Either E+ or E−

hasmassμ, in which case the claim above implies Lemma 2, or E± are both nonempty
and

|E+| < μ and |E−| > μ.
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In the second case, let s < sμ. Then, |E−| ∈ (|E+|, |Es |) and there exists t =
|E−|−|E+|
|Es |−|E+| such that |E−| = t |Es | + (1 − t)|E+|. The function t1Es + (1 − t)1E+

therefore belongs toA(0,1)
|E−| . Since 1E− is a minimizer of TV in this set, one must have

Per(E−) � TV(t1Es + (1 − t)1E+) � |E−| − |E+|
|Es | − |E+| Per(Es) + |Es | − |E−|

|Es | − |E+| Per(E
+).

This equation rewrites

Per(Es) � |Es | − |E+|
|E−| − |E+| Per(E

−) + |E−| − |Es |
|E−| − |E+| Per(E

+). (27)

Similarly, if s > sμ, one has |Es | < |E+| and |E+| is a convex combination of
{|E−|, |Es |}. The same steps lead to the same (27). Finally, one just write (we use
(27), the coarea and the layer-cake formulas)

TV(u) =
ˆ 1

0
Per(Es) �

ˆ 1

0

(|Es | − |E+|)Per(E−) + (|E−| − |Es |
)
Per(E+)

|E−| − |E+|

�
ˆ 1

0

Per(E−) − Per(E+)

|E−| − |E+| |Es | + |E−|Per(E+) − |E+|Per(E−)

|E−| − |E+|

= Per(E−) − Per(E+)

|E−| − |E+| μ + |E−|Per(E+) − |E+|Per(E−)

|E−| − |E+|
= TV (λ1E− + (1 − λ)1E+)

with λ = μ−|E+|
|E−|−|E+| .

As a result, one can replace w(0,1) in the decomposition (26) by a three valued
minimizer w̃(0,1) of TV in A(0,1)

μ . Therefore, combining the three modified parts we
see that there exists a minimizer in A

w̃ := (w̃1+ − 1) + w̃(0,1) − w̃−

which attains at most five values. ��

Proof of claim ByLemma3, 1
E (1)
s

minimizes total variation inA(0,1)
|Es | for almost every s.

Then, let us select a decreasing sequence sn ↘ sμ such that for each n, 1
E (1)
sn

minimizes

total variation in A(0,1)
|Esn |. Since E (1)

sn → E+ in L1, one has |E+| = lim |E (1)
sn | =

lim |Esn | and the semicontinuity for the perimeter gives

Per(E+) � lim inf Per(E (1)
sn ).
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In fact, the sequence Per(E (1)
sn ) is bounded. To see this, we fix a value ŝ < sμ and

since Es1 ⊂ E (1)
sn ⊂ Eŝ we can write for some tn ∈ (0, 1)

|E (1)
sn | = tn|Eŝ | + (1 − tn)|Es1 |.

Therefore, applying Lemma 3 again we obtain

Per(E (1)
sn ) � TV

(
tn1Eŝ + (1 − tn)1Es1

)
� Per(Eŝ) + Per(Es1).

Now, let us assume that there exists v ∈ BV(�) with
´

v = |E+| and TV(v) <

Per(E+) − ε. By the above, for every δ > 0 we can find n such that |E+| � |Esn | �
|E+| − δ and

Per(E+) � Per(E (1)
sn ) + δ.

Now, if δ < ε/10 is small enough, we can find a ball Bn ⊂ � such that
´
�

v ·1�\Bn =
|Esn | and ‖v‖∞ Per(Bn) � ε/10, so we get

TV(v · 1�\Bn ) � TV(v) + ‖v‖∞ Per(Bn) � Per(E+) − ε + ‖v‖∞ Per(Bn)

� Per(E (1)
sn ) + ‖v‖∞ Per(Bn) + δ − ε � Per(E (1)

sn ) − ε

2
,

and therefore we get a contradiction with the TV-minimality of E (1)
sn .

Selecting an increasing sequence s̃n ↗ sμ and such that � \ E (0)
sn minimizes TV in

A(0,1)
|Esn |, we obtain similarly that 1E− minimizes TV in A(0,1)

|E−| . ��

4.1.2 Proof of Lemma 3

Proof of Lemma 3 Since the arguments �0,�1 are fixed for the course of this proof,
we will denote the sets Aτ (�0,�1) by Aτ for each τ > 0. First, note that for every
s1 < s2, the function

u[s1,s2] := s21Es2
+ u · 1[s1,s2] + s11u<s1

is such that v := u[s1,s2]−s1
s2−s1

minimizes the total variation in A´
v . Indeed, if v̂ ∈ A´

v

with TV(v̂) < TV(v), then TV(v̂(s2−s1)+s1) < TV(u[s1,s2]). Since u = (u ·1u<s1 −
s1) + u[s1,s2] + (u · 1u>s2 − s2), then we would have

TV(u) = TV((u · 1u<s1 − s1)) + TV(u[s1,s2]) + TV((u · 1u>s2 − s2))

> TV((u · 1u<s1 − s1)) + TV(v̂(s2 − s1) + s1) + TV((u · 1u>s2 − s2))

� TV
(
(u · 1u<s1 − s1) + (v̂(s2 − s1) + s1) + (u · 1u>s2 − s2)

)
,

where (u · 1u<s1 − s1) + (v̂(s2 − s1) + s1) + (u · 1u>s2 − s2) ∈ Aν , which is a
contradiction with the minimality of u.

123



Applied Mathematics & Optimization

Letting s0 as in the assumptions, we have just seen that for every h > 0,
u[s0−h,s0+h]−(s0−h)

2h minimizes the total variation in Aνh with

νh :=
´
s0−h�u�s0+h(u − (s0 − h))

2h
+ |Es0+h |

= 1

2h

ˆ s0+h

s0−h
|{u > t} ∩ {u � s0 + h}| dt + |Es0+h |

= 1

2h

ˆ s0+h

s0−h
|{u > t}| dt = 1

2h

ˆ s0+h

s0−h
|Es | ds.

On the other hand, the total variation of
u[s0−h,s0+h]−(s0−h)

2h writes, using the coarea
formula,

1

2h

ˆ s0+h

s0−h
Per(Es).

Finally, let us assume that 1Es0
does not minimize total variation in A|Es0 |. Then,

there would exist ε > 0 and u0 ∈ A|Es0 | such that

Per(Es0) � TV(u0) + ε.

Since s0 is a Lebesgue point, one can find δ > 0 such that for every h � δ,

∣
∣
∣
∣
1

2h

ˆ s0+h

s0−h
Per(Es) ds − Per(Es0 )

∣
∣
∣
∣ �

ε

10
and

∣
∣
∣
∣
1

2h

ˆ s0+h

s0−h
|Es | ds − |Es0 |

∣
∣
∣
∣ �

ε

10
.

Let h � δ and B be a ball such that Per(B) � ε
4‖u0‖∞ . There exists α such that the

function u0 + α1B satisfies

ˆ
u0 + α1B = 1

2h

ˆ s0+h

s0−h
|Es | ds.

Reducing h if needed, one can enforce that |α| � 2‖u0‖∞.
Then,

TV(u0 + α1B) � TV(u0) + α Per(B) � Per(Es0) − ε + α Per(B)

� 1

2h

ˆ s0+h

s0−h
Per(Es) ds − 4ε

10
,

which contradicts the minimality of u[s0−h,s0+h] and proves the claim. ��
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4.2 Minimizers with Connected Level-Sets

In this subsection, we refine our analysis slightly, and show the existence of three-
valuedminimizers for Problem1with additional properties.We startwith the following
definition:

Definition 3 A set of finite perimeter A is called indecomposable, if there are no two
disjoint finite perimeter sets B,C such that |B| > 0, |C | > 0, A = B ∪ C and
Per(A) = Per(B) + Per(C).

This notion is in fact a natural measure-theoretic sense of connectedness for sets
for finite perimeter, for more information about it see [2].

Remark 3 By computing the Fenchel dual of Problem1, it can be seen that the non-zero
level-sets of any solution are minimizers of the functional

E �→ Per(E) −
ˆ

�\�s

k, with k ∈ L2(� \ �s).

This optimality property in turn implies lower bounds only depending on k for the
perimeter and mass of E , and in case it can be decomposed in the sense of Definition
3, the same lower bounds also hold for each set in such a decomposition. In conse-
quence, E can only be decomposed in at most a finite number of sets. The proof of
these statements relies heavily on the results of [2], and is presented in [12] for the
unconstrained case, and [21] for the case with Dirichlet constraints, as used here.

Assuming these results, one can simplify the level sets of solutions further:

Theorem 6 There exists a minimizer for Problem 1 attaining exactly three values for
which all non-zero level-sets are indecomposable.

Proof First, we consider the positive level-set and assume that it is decomposable in
two sets�1,�2 as in Definition 3. Then the corresponding minimizer u can be written
as

u = α(1�1 + 1�2) − β1�− ,

where α, β > 0. Consider a perturbation of u of the form

uh = (α + h)1�1 + (α + k)1�2 − (β + l)1�− ,

with |h| � α, |k| � α, and |l| � β. Then, since �1 ∩ �2 = ∅, uh ∈ BV� if and only
if

h|�1| + k|�2| − l|�−| = 0 and h|�s
1| + k|�s

2| − l|�s−| = 0,

where �s
i := �i ∩ �s . These two equations lead to

l = h
|�s

1||�2| − |�1||�s
2|

|�2||�s−| − |�−||�s
2|

and k = h
|�s

1||�−| − |�1||�s−|
|�2||�s−| − |�−||�s

2|
.
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Under our assumptions on h, k, l,�1 and �2, and since 1�1 + 1�2 = 1�1∪�2 , the
total variation of the perturbed function uh can be written as

TV(uh) = (α + min(h, k))Per(�1 ∪ �2)

+ (h − k)+ Per(�1) + (k − h)+ Per(�2) + (β + l)Per(�−)

= (α + h)Per(�1) + (α + k)Per(�2) + (β + l)Per(�−).

Then, because u is a minimizer of TV, it follows that

h Per(�1) + k Per(�2) + l Per(�−) � 0.

Since the left hand side and k, l are linear in h, one can replace h by −h and obtain

h Per(�1) + k Per(�2) + l Per(�−) = 0

which shows that uh is also a minimizer. Now since we have

β = α
|�1| + |�2|

|�−| and l = h|�1| + k|�2|
|�−| ,

one can choose h such that h = −α or k = −α without violating |l| ≤ β, and
therefore produce a minimizer whose positive part is either �2 or �1, respectively.
We proceed similarly for the negative part and therefore obtain an indecomposable
negative level-set. ��
Remark 4 In the above proof, through an adequate choice of components for deletion,
one can even obtain simply connected level sets. The measure-theoretic notion corre-
sponding to simple connectedness is defined in [2] to be boundedness of the connected
components of the complement of the set, these connected components having been
defined through indecomposability. For example, assuming that �2 is fully enclosed
in �− (that is if ∂�2 ∩ ∂�− = ∂�2), then the variation of uh can also be written

TV(uh) = (α + h)Per(�1) + (α + k + β + l)Per(�2) + (β + l)(Per(�−) − Per(�2),

which is linear in h as long as k � −α −β − l. The equality case in this last constraint
corresponds to joining�2 to�−, and avoiding creating a “hole” in�− by the procedure
mentioned above (which replaces α1�2 by zero). Clearly, this procedure can also be
performed for the positive level set, and in fact the “holes” to be deleted could also be
connected components of the zero level set. Therefore, a solution in which both the
positive and negative level set are simply connected can be obtained.

Remark 5 The intuition behind these last results is that, like in the proof of Theorem
5, the constraints of the problem are linear with respect to the values, and the total
variation is also linear as long as the signs of the differences of values at the interfaces
do not change. In particular, the points at which the topology of the level sets changes
are situations in which these signs change (that is, the values of two adjacent level sets
are equal).
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5 Numerical Scheme and Results

We now turn our attention to the numerical computation of solutions to the eigenvalue
for Problem1.At first, for simplicity, we limit ourselves to the case (considered in [17])
in which the velocities are assumed constant on the whole �s . That is, the problem
considered is minimization of the total variation in the space

BV�,1 :=
{

u ∈ BV(R2)
∣
∣
ˆ

�

u = 0 , u ≡ 1 in �s, u ≡ 0 in R2 \ �

}

, (28)

where the constraint u ≡ 1 in �s corresponds to (18) under this simplification.
This restriction corresponds to the case inwhich either�s is connected, so that there

is only one solid particle, or all the particles are constrained to move with the same
velocity. In Sect. 5.4 we point out the required modifications for the multi-particle case
and present a variety of computed examples.

To compute a minimizer of TV in BV�,1, we use a standard primal dual algo-
rithm [10]. The constraint

´
�

v = 0 is enforced through a scalar Lagrange multiplier
q, whereas the conditions v = 0 on ∂� and v = 1 on �s are encoded as indica-
tor functions. Our discretization of choice is finite differences on a rectangular grid
{1, . . . ,m} × {1, . . . n}, where in this whole section, for simplicity, we assume that
n = m and � � (0, 1)2. This leads to a saddle point problem of the form

min
v∈X max

p∈X4

q∈R

χCn (v) +
∑

i, j

[
(∇v)i j · pi j − χ {|·|∞≤1}(pi j ) − qvi j

]
. (29)

Here, X = R
n2 denotes the space of real-valued discrete functions on the square grid

Gn = {1, . . . , n} × {1, . . . n}. Since we use Dirichlet boundary conditions, the grid
encloses the physical domain. The corresponding constraint set is then

Cn := {v ∈ X | v = 0 on Gn \ �n, v = 1 on �n
s

}
, (30)

where �n and �n
s denote the parts of the grid corresponding to � and �s respectively

(note that to correctly account for perimeter at the boundary we must have �n ⊂
{2, . . . , n − 1} × {2, . . . n − 1}). The indicator function (in the convex analysis sense)
of a set A is denoted by χ A, so that χ A(x) = 0 if x ∈ A, and +∞ otherwise. ∇ stands
for a suitable discrete gradient, whose choice we now discuss.

5.1 Discretization

We discretize the problem using the “upwind” scheme of [11] which has the advantage
of carrying a high degree of isotropy. The discrete velocity is denoted by vi j , and we
use the signed gradient (∇v)i j introduced in [11], containing separate components for
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Fig. 3 Results (contrast-enhanced images) with different discretizations. Top row: boundary conditions,
result with only forward differences andwith the chosen upwind scheme. Bottom row: detail of the interfaces
in both cases. For the upwind scheme, the resulting interfaces depend less strongly on their orientation, and
there are two flip symmetries

forward and backward differences with opposite signs:

(∇v)i j :=
(
vi+1, j − vi, j , vi−1, j − vi, j , vi, j+1 − vi, j , vi, j−1 − vi, j

)

=:
(
(∇v)

i j
1,+, (∇v)

i j
1,−, (∇v)

i j
2,+, (∇v)

i j
2,−
) (31)

therefore, at each grid point (i, j) ∈ Gn the signed gradient and its corresponding
multiplier variables ∇vi j , pi j ∈ (R2)2. We note that to compute the gradient when
any of the indices is 1 or n one needs to extends the functions outside the grid, but for
the problem at hand any choice will do, since �n never touches the boundary of the
grid.

For us it is important to use a discretization that takes into account derivatives in
all coordinate directions equally, since we aim to resolve sharp geometric interfaces
that are not induced by a regularization data term. Figure 3 contains a comparison
with the results obtained when using forward differences. In that case, the geometry
of the interfaces is distorted according to their orientations, a phenomenon which is
minimized in the upwind scheme. Using centered differences is also not adequate,
since the centered difference operator has a nontrivial kernel and our solutions are
constant in large parts of the domain.

5.2 Convergence of the Discretization

It is well-known that the standard finite difference discretizations of the total variation
converge, in the sense of �-convergence with respect to the L1 topology [11], where
the discrete functionals are appropriately defined for piecewise constant functions.
We now aim to demonstrate that the chosen discretization and penalization scheme
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still converges and correctly accounts for the boundary conditions in the limit. We
introduce, for each (i, j) ∈ {1, . . . , n − 1}2,

Rn
i j := 1

n

(

i − 1

2
, i + 1

2

)

×
(

j − 1

2
, j + 1

2

)

.

First, we need to decide which constraint to use in the discrete setting. We denote by

E − B

(
1

n

)

:=
{

x ∈ E
∣
∣ d(x, ∂E) >

1

n

}

,

Our choice is to take

�n
s :=

⋃

Rn
i j⊂�s−B( 1n )

Rn
i j

whereas

�n := [0, 1]2 \
⎛

⎜
⎝

⋃

Rn
i j⊂([0,1]2\�)−B( 1n )

Rn
i j

⎞

⎟
⎠ ,

such that the discrete constraints are less restrictive than the continuous ones (see
Fig. 4) and

�n
s � �s, [0, 1]2 \ �n � [0, 1]2 \ �. (32)

We define TVn as in [11], when the function is piecewise constant on the Rn
i j and+∞

otherwise.

TVn := 1

n2
∑

i, j

|∇vi j ∨ 0|

with ∇vi j ∨ 0 denotes the positive components of ∇vi j , which was defined in (31),
therefore picking only the ‘upwind’ variations. The norm is computed using the inner
product in R2×2.

We first prove the following lemma, which states that the continuous total variation
may be computed with multipliers with positive components, mimicking the discrete
definition.

Lemma 4 Let v ∈ BV(Rd) and � ⊂ R
d open. Then, TV(v,�) = TV+(v,�), where

TV+(v,�) := sup

{ˆ
�

v · div p − v · div q ∣∣ p, q ∈ C1
0 (�,Rd ), |p|2 + |q|2 � 1, p, q � 0

}

.

(33)
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Fig. 4 Discretization of the domain and constraints: the discrete grid encloses �, and discrete regions are
only constrained if they are compactly contained in the corresponding continuous ones. Here, grey squares
have free values while the black and white ones are fixed

Proof We recall that

TV(v,�) = sup

{ˆ
�

v · div p
∣
∣ p ∈ C10(�,Rd), |p| � 1

}

. (34)

Let p, q be admissible in the right hand side of (33). Then we notice that p−q is also
admissible in (34), because p, q being componentwise positive implies

|p − q|2 = |p|2 + |q|2 − 2 p · q � 1 − 2 p · q � 1,

and since div(p − q) = div p − div q we have

TV+(v,�) � TV(v,�).

To prove the reverse inequality, let ε > 0 be arbitrary and pε ∈ C10(�,Rd) with
|pε| � 1 such that

TV(v,�) −
ˆ

�

d∑

j=1

v j div(pε) j < ε,

which we can write (renaming pε to its additive inverse, for convenience) as

ˆ
�

(

1 − pε · d(∇v)

d|∇v|
)

d|∇v| < ε. (35)

Noting that |pε| � 1 and d∇v
d|∇v| � 1, the last inequality implies (since for |μ|, |ν| � 1,

|μ − ν|2 � 2 − 2μ · ν) as

ˆ
�

1

2

∣
∣
∣
∣pε − d∇v

d|∇v|
∣
∣
∣
∣

2

d|∇v| < ε.

123



Applied Mathematics & Optimization

Notice that we may write this integral, since the function d∇v
d|∇v| is a Radon-Nikodym

derivative, in principle only in L1(�, |∇v|), but its modulus is 1 for |∇v|-almost
every point [1, Corollary 1.29], so it is also in L2(�, |∇v|). Now, by (35) and the
Cauchy–Schwarz inequality we have

ˆ
�

1 − |pε|2 d|∇v| =
ˆ

�

(
1 − |pε|

)(
1 + |pε|

)
d|∇v| ≤ 2

ˆ
�

1 − |pε| d|∇v|

≤ 2
ˆ

�

(

1 − pε · d∇v

d|∇v|
)

d|∇v| < 2ε,

(36)

Now we replace the components (pε)i j by ( p̃ε)i j which are smooth, coincide with
(pε)i j out of {|(pε)i j | <

√
ε}, that satisfy

|( p̃ε)i j | � |(pε)i j |

and such that {( p̃ε)i j = 0} is the closure of an open set: One can for example choose

0 < α <
√

ε

and define a smooth nondecreasing function ψα : R → R such that ψα(t) = t for
|t | � α, |ψα(t)| ≤ |t | and ψα(−α/2, α/2) = {0} to define

( p̃ε)i j := ψα ◦ (pε)i j .

Thus we have | p̃ε| � 1 and |( p̃ε)i j − (pε)i j | � √
ε, and taking into account (35) we

obtain
(ˆ

�

∣
∣
∣
∣ p̃ε − d∇v

d|∇v|
∣
∣
∣
∣

2

d|∇v|
) 1

2

�
(ˆ

�

∣
∣
∣
∣pε − d∇v

d|∇v|
∣
∣
∣
∣

2

d|∇v|
) 1

2

+
(ˆ

�

| p̃ε − pε|2 d|∇v|
) 1

2

� C
√

ε (1 + |∇v|(�) ) .

(37)

Furthermore, using (36) and the definition of p̃ε we obtain the estimate

ˆ
�

1 − | p̃ε|2 d|∇v| =
ˆ

�

1 − |pε|2 d|∇v| +
ˆ

�

|pε|2 − | p̃ε|2 d|∇v| ≤ 2ε + 4ε|∇v|
< Cε(1 + |∇v|),

which ensures, writing 1−μ : ν = 1
2 (1−|μ|2 +1−|ν|2 +|μ− ν|2) and by (37) that

∣
∣
∣
∣

ˆ
�

(

p̃ε : d∇v

d|∇v| − 1

)

d|∇v|
∣
∣
∣
∣ � Cε

(
1 + ( 1 + |∇v|(�)

)2
)

. (38)
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Now, we notice that having fattened the level-set {( p̃ε)i j = 0}, we can write

( p̃ε)i j = [( p̃ε)i j
]+ − [( p̃ε)i j

]−

where both quantities are smooth. Writing similarly

p̃ε = p̃+
ε − p̃−

ε

with p̃±
ε are smooth and have only positive components, we note that ( p̃+

ε , p̃−
ε ) are

admissible in the right hand side of (33), so that (38) implies

TV+(v,�) � TV(v,�) − C(v)ε.

Letting ε → 0, we conclude. ��
We can now prove Gamma-convergence of the discrete problems, implying conver-
gence of the corresponding minimizers.

Theorem 7

TVn + χCn
�−L1−−−→ TV + χC

where

Cn := {v = 1 on �n
s , 0 on [0, 1]2 \ �n)

and

C := {v = 1 on �s, 0 on [0, 1]2 \ �)}.

Proof First, we study the �-liminf and assume that vn → v in L1. Notice that we can
write TVn(vn) as a dual formulation

TVn(vn) = sup
{
vn · divn(p) | p : G → (R2)2

}

where divn p ∈ R
2 is the signed divergence corresponding to (31), and defined by

(divn(p))i j := (p1,+)i, j − (p1,+)i−1, j + (p1,−)i, j − (p1,−)i+1, j

(p2,+)i, j − (p2,+)i, j−1 + (p2,−)i, j − (p2,−)i, j+1.

This is obtained easily by a (discrete) integration by parts in the expression

|∇v ∨ 0| = sup
|p|�1
pi�0

∇v · p.
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Now, we note that every p : G → (R2)2 can be viewed as the discretization of
some smooth function p : [0, 1]2 → (R2)2, for example stating

pi j =
 
Ri j

p.

As a result, one can write

TVn(vn) = sup
{
vn · divn(p) ∣∣ p ∈ C10

(
[0, 1]2, (R2)2

)
, |p| � 1, p � 0

}
.

It is well known that for a smooth function p, the quantity divn p converges to

div p = div(p1,1, p2,1) + div(−p1,2,−p2,2).

Therefore, using Lemma 4 we get

TV+(v) = TV(v) � lim inf TVn(vn).

For χCn , let us first assume χC (v) = +∞, that is either v �≡ 0 on [0, 1]2 \� or v �≡ 1
on�s . If the latter holds, then for ε small enough,�s∩({v > 1 + 2ε} ∪ {v < 1 − 2ε})
has positive measure and thanks to the L1 convergence of vn ,

�n
s ∩ ({vn > 1 + ε} ∪ {vn < 1 − ε})

must have a positive measure for n big enough. That implies χCn (vn) = +∞ and the
�-liminf inequality is trivially true. If χC (v) < ∞, then χC (v) = 0 and the inequality
is also true since Cn ⊂ C .

Let now v ∈ BV((0, 1)2). For the �-limsup inequality we want to construct a
sequence vn → v such that

TV(v) + χC (v) � lim sup TVn(vn) + χCn (vn).

If v /∈ C , any vn → v gives the inequality. If v ∈ C , then we first introduce

vδ = ψδ ∗ v

where ψδ is a convolution kernel with width δ.
Then, TV(vδ) → TV(v) ([3, Theorem 1.3], noticing that v is constant around

∂[0, 1]2) and, thanks to (32), if δ � 1
n , we have χCn (vδ) = 0.

We define vδ,n by

(vδ,n)
i j =

 
Rn
i j

vδ,
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that satisfies χCn (vδ,n) = 0, and compute

∣
∣(vδ,n)

i+1, j − (vδ,n)
i, j
∣
∣

n
= 1

n

∣
∣
∣
∣
∣

 
Rn
i j

vδ

(

x + 1

n
, y, z

)

− vδ(x, y)

∣
∣
∣
∣
∣
� inf

Rn
i j∪
(
Rn
i j+( 1n ,0)

) |∂xvδ |.

Then since vδ ∈ C1, it is clear that the right hand side converges to |∂xvδ|. Note that in
the ’upwind’ gradient of a smooth function, only one term by direction can be active,
then it is also true for vδ,n if n is large enough and therefore TVn(vδ,n) → TV(vδ).

By a diagonal argument on δ and n, we conclude. ��

5.3 Single Particle Results

In this section, we again restrict ourselves to the case in which there is either only one
particle, or the particles are constrained to move with the same velocity.

In [17], it is shown analytically that the minimizers of TV over the set BV�,1
defined in (28) have level-sets thatminimize some geometrical quantities. In particular,
Theorem 4.10 shows that there exists a minimizer of the form

u0 := 1�1 − λ1�−

where �− is the maximal Cheeger set of � \ �s , and �1 is a minimizer of

E �→ P(E) + P(�−)

|�−| |E |

over E ⊃ �s .
Unfortunately, determining Cheeger sets analytically is only possible in a very

narrow range of sets, which makes useful the numerical computation of minimizers.
We present two examples of the output of the numerical method for (29) with the
constraint (30). First, we consider the “Pacman” shaped �s within again a square �;
see Fig. 5 (left). This example induces both asymmetry (left-right) and non-convexity
of�s which is showed in [17] to influence the geometry of theminimizer. The solution
is shown in the central panel of Fig. 5 and the right-hand panel shows a histogram of
the solution.

The second example concerns the geometry depicted in Fig. 6 (top panel), in which
�s denotes the two L-shaped regions in the white dumbbell-shaped domain �. By
giving a close look, it is clear that there is a Cheeger set of � \ �s in each half of the
domain, which implies the non uniqueness of the minimizer. The question is which
solution the computations will converge to. Figure 6 (lower, left and right) show that
different minimizers are selected numerically, in this case by using different numerical
resolution.
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Fig. 5 Numerical results with a single particle, illustrating the results of [17]. On the left of the two
subfigures, the free part�n \�n

s of the computational domain Gn is in gray, and the particles�n
s are white.

The minimizers are on the right, where the blue colour represents the negative values and the red colour, the
positive ones. More precisely, the left result has nonzero values {−2.38, 7.41} whereas the right result has
{−2.35, 7.41}. The corresponding computed critical yield numbers are is Yc = 0.0576 and Yc = 0.0596,
with � having side length 1 (Color figure online)

Fig. 6 Boundary conditions and results computed at twodifferent resolutions, in a situationwhen uniqueness
of minimizers of TV in BV�,1 is not expected [17,24]. The nonzero values are {−4.45, 53.0} for the left
result and {−8.67, 53.8} for the right one. In both cases, Yc = 0.087, where the longest side of� is 1 (Color
figure online)

5.4 Several Particles

We now extend the numerical scheme of to optimize also over the velocities γi on
each component �i

s . The corresponding problem is again the minimization (29), but
with the new constraint set

Cn :=
⎧
⎨

⎩
v ∈ X

∣
∣ v = 0 on Gn \ �n, v constant on (�n

s )
i ,

1

|�n
s |
∑

�n
s

v = 1

⎫
⎬

⎭
.

Here, (�n
s )

i denotes the i-th component of the discrete domain, corresponding to �i
s .

The set Cn is the discrete counterpart to the set BV� used in Sects. 3 and 4.
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Fig. 7 Examples of minimizers of TV in BV� for several particles. The top row represents the boundary
conditions. The computed minimizers are depicted below, where the blue colour represents the negative
values and the red colour, the positive ones. The nonzero values are {−3.40, 23.7}, {−4.27, 17.1} and
{−3.21, 22.9} respectively, whereas the corresponding critical yield numbers areYc = 0.0378,Yc = 0.0383
and Yc = 0.0396, again when the longest side of � is 1 (Color figure online)

Fig. 8 Two examples of minimizing TV in BV� for several particles. Here, the nonzero values are
{−1.78, 33.8} and {−2.21, 16.3} and Yc = 0.0324 (the length of a side of � being 1) and Yc = 0.0344 (the
diameter of � being 1) respectively. For the left result, since the magnitude of the negative values is much
smaller than that of the positive ones, their color has been rescaled (Color figure online)

We give several examples that illustrate the behavior of TV-minimizers in BV�
with a disconnected�s . Figure 7 shows the influence of the positions of particles with
respect to each other and to the boundary, which might lump up in different configura-
tions. Figure 8 shows two generic situations: Fig. 8a, the flowing part is concentrated
around one connected component of �s whereas on Fig. 8b, it is concentrated around
the whole �s .

We also give an example where uniqueness of the minimizer is not expected. In
Fig. 9, we consider a grid of circular particles in a square. It is easy to see analytically
that any subset of the particles can be chosen as positive part of the minimizer. We
present two computations at different numerical resolutions that pick two different
subsets.

Since the solutions we compute correspond to limit profiles of the original flows
(Theorem 7), the results presented both here and in Sect. 4.1 mean that near the stop-
ping regime Y → Yc the transition between yielded and unyielded regions of the
fluid typically happens closer and closer to the particle boundaries and the domain
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Fig. 9 Numerical computation of a minimizer at two different resolutions when uniqueness is not expected.
Here, since the magnitude of the negative values is much smaller than that of the positive ones, their color
has been rescaled (Color figure online)

Fig. 10 Two randomdistributions of the same number of particles in a square. On the left lies the distribution
of particles and on the right the computed minimizer. Note that the values are {−2.51, 712} (up) and
{−4.21, 702} (down) while Y up

c = 7.89 · 10−3 and Y low
c = 6.75 · 10−3. Here again, the side length of the

domain is 1 and the color of the negative values has been rescaled (Color figure online)

boundaries. This is consistent with the Cheeger set interpretation of the buoyancy case
(which was already present in [17]) and the many previous works on non-buoyancy
cases ([19,28], for example).
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5.5 A RandomDistribution of Small Particles

We also present two examples of random distribution of square particles in a bigger
square. Figure 10 shows the same number of particles distributed in two different ways
and the corresponding minimizers. This example shows that the yield number depends
strongly on the geometry of the problem, not only on the ratio solid/fluid.An interesting
problem would be to investigate the optimal distribution to maximize/minimize this
yield number.
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