
Journal of Global Optimization (2019) 73:547–565
https://doi.org/10.1007/s10898-018-0711-5

Rigorous packing of unit squares into a circle

Tiago Montanher1,2 · Arnold Neumaier2 ·Mihály Csaba Markót1,2 ·
Ferenc Domes2 · Hermann Schichl2

Received: 27 January 2018 / Accepted: 25 September 2018 / Published online: 3 October 2018
© The Author(s) 2018

Abstract
This paper considers the task of finding the smallest circle into which one can pack a fixed
number of non-overlapping unit squares that are free to rotate. Due to the rotation angles,
the packing of unit squares into a container is considerably harder to solve than their circle
packing counterparts. Therefore, optimal arrangements were so far proved to be optimal
only for one or two unit squares. By a computer-assisted method based on interval arithmetic
techniques, we solve the case of three squares and find rigorous enclosures for every optimal
arrangement of this problem. We model the relation between the squares and the circle as a
constraint satisfaction problem (CSP) and found every box that may contain a solution inside
a given upper bound of the radius. Due to symmetries in the search domain, general purpose
interval methods are far too slow to solve the CSP directly. To overcome this difficulty, we
split the problem into a set of subproblems by systematically adding constraints to the center
of each square. Our proof requires the solution of 6, 43 and 12 subproblems with 1, 2 and 3
unit squares respectively. In principle, the method proposed in this paper generalizes to any
number of squares.

Keywords Square packing into a circle · Interval branch-and-bound · Tiling constraints ·
Computer-assisted proof

Mathematics Subject Classification 52C15 · 90C26 · 65K05 · 65G30

1 Introduction

Let S1, . . . , Sn be n open unit squares and denote by Cr the closed circle of radius r centered
at the origin. This paper deals with the problem of finding the smallest value of r such that
one can pack S1, . . . , Sn into Cr without overlapping. Formally, we can write the problem as

This research was supported through the research Grants P25648-N25 and P27891 of the Austrian Science
Fund (FWF).

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s10898-018-
0711-5) contains supplementary material, which is available to authorized users.

B Tiago Montanher
tiago.de.morais.montanher@univie.ac.at

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10898-018-0711-5&domain=pdf
http://orcid.org/0000-0001-9730-5748
https://doi.org/10.1007/s10898-018-0711-5
https://doi.org/10.1007/s10898-018-0711-5

548 Journal of Global Optimization (2019) 73:547–565

min r

s.t. Si ⊆ Cr 1 ≤ i ≤ n

Si ∩ S j = ∅ 1 ≤ i, j ≤ n, i �= j .

(1)

Packing identical objects into a container is an attractive part of geometrical optimization.
The subject drew the attention of a considerable number of researchers, who contributed to
problems similar to the one discussed in this paper.

The circle packing is the simplest packing problem in 2 dimensions in the sense that it does
not involve the angles of the objects. Markót studied the packing of circles into a square from
the interval analysis point of view in a series of papers [15,16,24]. In particular, he proved
rigorous bounds for n = 28, 29 and 30 circles. For a survey of the circle packing under
the global optimization point of view, see [5]. The website Packomania [22] maintains an
updated list of the best-known values for the packing of equal circles into several containers.

Kallrath and Rebennack [12] studied the packing of ellipses into rectangles using state-
of-the-art complete global optimization solvers. He succeeded to find the global optimum
for the case n = 3 without rigor. For the packing of ellipsoids, see [2,3].

Erdös andGraham [8] inaugurated the packing of unit squares into a square. They show that

the wasted area in a container with side length l is O(l
7
11). The proof relies on geometrical

arguments and not on rigorous computations. Recent contributions in the packing of unit
squares into a square include new bounds for the wasted area [6], the optimality proof for
the cases n = 5, . . . , 10, 13 and 46 [1,10,23] and the optimality proof for n − 2 and n − 1
whenever n is a square [19]. Again, none of these contributions rely on computer-assisted
proofs. For a dynamic survey on the packing of unit squares in a square, see [10].

The packing of unit squares into general containers received considerably less attention
than the circle or the unit square packing into a square. For example, Friedman [9] maintains
a list of proved and best-known values for the packing of unit squares into circles, triangles,
L-shapes, and pentagons. In each case, only trivial arrangements are proved optimal. For the
subject of interest in this paper, the packing of unit squares into a circle, the first open case
is n = 3. For a list of figures of squares packed into a circle, see https://www2.stetson.edu/
~efriedma/squincir/.

1.1 Contribution and outline

This paper introduces a computer-assisted method for finding rigorous enclosures for r in
Problem (1) and the correspondingoptimal arrangements. Themethod is of theoretical interest
since it proves optimality instead of only presenting a feasible arrangement. Therefore, it is
suitable for small values of n only.

Our approach relies on the interval branch-and-bound framework. We implement the
algorithm in C++ using the forward-backward constraint propagation [21] to reduce the
search domain. Section 2 introduces the solver. The code is available at http://www.mat.
univie.ac.at/~montanhe/publications/n3.zip.

Section 3 formulates Problem (1) as a constraint satisfaction problem (CSP). This paper
uses the concept of sentinels [4,18] to model non-overlapping conditions and the convexity
of the circle to write containment constraints. Given an upper bound rn for rn , the CSP
asks for every feasible arrangement satisfying r ≤ rn . Our software produces a list of small
interval vectors with the property that every optimal arrangement of (1) belongs to at least
one element in the list.

123

https://www2.stetson.edu/~efriedma/squincir/
https://www2.stetson.edu/~efriedma/squincir/
http://www.mat.univie.ac.at/~montanhe/publications/n3.zip
http://www.mat.univie.ac.at/~montanhe/publications/n3.zip

Journal of Global Optimization (2019) 73:547–565 549

General purpose interval solvers are usually not capable of solving packing problems due
to symmetries in the search domain. To overcome this difficulty, Sect. 4 shows how to split
the original CSP into a set of subproblems by systematically adding constraints to the center
of each square. We call them tiling constraints as the idea resembles the one proposed in
[15,16,24]. The tiling divides the search domain into a set of isosceles triangles that must
contain the center of at most one unit square. Then, one can replace the original CSP by a
set of

(K
n

)
subproblems, where K is the number of triangles in the tiling.

Our procedure iterates on the number of squares to avoid the exponential growth of
subproblems. At the i-th iteration, we look at every possible combination of i triangles which
can accommodate i unit squares into a circle with the radius at most rn . The rationale behind
this strategy is twofold: (i) It allows us to discard a large number of hard subproblems by
proving the infeasibility of more straightforward cases and (ii) It propagates the reduction on
the search domain through the iterations. We also show that some combinations of triangles
are symmetric by construction. Then one can discard them without any processing. This
observation in addition to our iterativemethod reduces the number of hard cases considerably.

Section 5 illustrates the capabilities of our method. We find a mathematically rigorous

enclosure for r3 and the corresponding optimal arrangement. If one set r = 5
√
17

16 as pointed
by Friedman [9], the tiling produces 36 triangles. Our approach requires the solution of
6 subproblems with one square, 43 with two and only 12 subproblems with 3 squares to
conclude the proof. It is < 1% of all possible

(36
3

) = 7140 combinations. The method could
also be used to find optimal configurations for higher values of n (e.g., n = 4, 5, 6).

1.2 Interval notation

This paper is an application of the interval branch-and-bound framework [11,13]. We assume
that the reader is familiar with concepts from interval analysis [20]. Let a, a ∈ Rwith a ≤ a.
Thena = [a, a]denotes the intervalwith inf(a) := min(a) := a and sup(a) := max(a) := a.
We denote the width of the interval a by wid(a) := a − a.

The set of nonempty compact real intervals is given by

IR := {[a, a] | a ≤ a, a, a ∈ R}.
Let S ⊆ R be any set. Then the interval hull 	
S of S is the smallest interval containing S.

An interval vector (also called box) x := [x, x] is the Cartesian product of the closed real
intervals xi := [xi , xi] ∈ IR. We denote the set of all interval vectors of dimension n by
IR

n . We apply the width operator component wise on vectors. Therefore max(wid(x)) :=
max(wid(x1), . . . ,wid(xn)). Interval operations and functions are defined as in [13,20]. The
absolute value of the interval a is given by

|a| :=
⎧
⎨

⎩

a if inf(a) ≥ 0,
[0,max(− inf(a), sup(a))] if 0 ∈ a,
−a if sup(a) ≤ 0.

Let a and b be two intervals. The maximum of a and b is defined by

max(a,b) := [max(inf(a), inf(b)),max(sup(a), sup(b))].
Let F : Rn → R

m be a function defined on x ∈ IR
n and let f ∈ IR

m . We denote the
natural interval extension of the function F by F. A constraint satisfaction problem (CSP) is
the task of finding every point satisfying

F(x) ∈ f, x ∈ x.

123

550 Journal of Global Optimization (2019) 73:547–565

Table 1 The finite state machine for the inner loop of the Algorithm 1

Current state Next state Condition

Forward CP [21] Exit Box x is infeasible

Backward CP Otherwise

Backward CP [21] Forward CP GRel (x, x′) > εT

Feasibility verification Otherwise

Feasibility verification [7] Exit True

We call x the search domain and the problem is said to be infeasible if there is no x ∈ x
satisfying F(x) ∈ f . We also denote constraint satisfaction problems by the triplet (F, f, x).

2 The algorithm

This section describes the algorithm designed for solving the subproblems of form (1) using
interval arithmetic [11,13,20] The solver consists of two components, the memory, and the
reducer. The former manages the branch-and-bound tree while the latter is responsible for
processing the current box. There is also a post-processing step called cluster builder to group
close boxes in the solution list.

Thememory keeps the list of unprocessed boxes. It is also responsible for the box selector,
and to split the boxes coming from the reducer that cannot be discarded or saved as a solution.
In this paper, the selector is a depth-first search procedure while the splitter creates two boxes
by dividing the input in the midpoint of the coordinate with maximum width.

The reducer contains a list of rigorous methods to reduce or discard boxes. This paper
uses the forward-backward constraint propagation [21] and a feasibility verification method
[7]. We consider a CSP of form (F, x, f) in the next paragraphs to overview each method.

The forward-backward constraint propagation decomposesF into a set of simple functions
(like the exponential function or the sum of several elements) and displays the pieces in a
graph. The forward step is a procedure to evaluate F(x) systematically. In this case, the data
flow from the decision variable nodes of the graph to the constraint nodes F1, . . . ,Fm . At
the end of this step, each constraint node contains an enclosure of Fi (x) ∩ fi . The backward
step acts reversely. It starts from the constraint nodes F(x) ∩ f and walks the graph applying
inverse functions until reaching x1, . . . , xn . At the end of the backward step, we have a new
box x′ ⊆ x with the reduced search domain.

This paper employs the following feasibility verification method. Let x be a box and
define the midpoint of x as x∗. Then, we build a small box x∗ around the x∗ and check its
feasibility. The box x∗ is a feasible if F(x∗) ⊆ f . We also save a box x as solution if it satisfies
max(wid(x)) < εx for a given εx > 0.

The order intowhichwe call the rigorousmethods to process xmay influence the efficiency
of the branch-and-bound procedure. In this paper, the methods follow the finite state machine
described in Table 1.

The parameter εT > 0 is the threshold tolerance which controls the relative gain of the
box x′ ⊆ x with the help of the following function

GRel(x, x′) := max
i=1,...,n;
wid(xi)>0

(
wid(x ′

i)

wid(xi)

)
.

123

Journal of Global Optimization (2019) 73:547–565 551

It is clear that the input of GRel at each iteration is the box x and the outcome of the rigorous
method, x′.

After processing every box in the memory, we run a post-processing step to build clusters
of solutions. This method supports the analysis of the solution list since it reduces the number
of boxes on it. Given two intervals a and b, we define the gap between a and b by

gap(a,b) :=
⎧
⎨

⎩

inf(b) − sup(a) if inf(b) > sup(a),
inf(a) − sup(b) if inf(a) > sup(b),

0 if a ∩ b �= ∅.

We save two boxes x, y ∈ IR
n in the same group if

max
i=1,...,n

gap(xi , yi) < εC

where εC is the cluster builder tolerance. After assigning a group to every box in the solution
set, we return the interval hull of each group and conclude the procedure.

Algorithm 1 summarizes the interval branch-and-bound method. We implement the algo-
rithm in C++ using two interval arithmetic libraries, the Filib [14] and the Moore [17]. The
user can choose any of these implementations in the verification of the proof. We report only
results from the test with Filib in this paper. The supplementary material also reports the
results utilizing Moore. They are consistent with each other.

Algorithm 1 Simplified solver
Input: The CSP (F, f, x). The acceptance, threshold and cluster builder tolerances εx > 0, εT > 0 and

εC > 0 respectively. The list M of rigorous methods to reduce the search space.
Output: The list L of boxes satisfying the following property. If x ∈ x is a feasible point of (F, f, x) then

there exists at least one box x′ ∈ L such that x ∈ x′.
1: Run the forward-backward constraint propagation procedure on (F, f, x). Save the reduced domain in x′;
2: if x′ is proved to be infeasible then
3: Return ∅;
4: end if
5: Start the list of boxes to be processed with x′;
6: L ← ∅;
7: while has boxes to process do
8: Run the problem selector to obtain x;
9: i ← 1;
10: while i ≤ |M| do
11: Run the strategy Mi on (F, f, x) to obtain the reduced box x′;
12: if GRel (x, x′) > εT then
13: i ← 1;
14: x ← x′;
15: continue;
16: end if
17: i ← i + 1;
18: x ← x′;
19: end while
20: if wid(x) ≤ εx then
21: L ← x;
22: continue;
23: end if
24: Run the splitter on x and stack all subproblems in the memory;
25: end while
26: Run the cluster builder onL with the cluster tolerance εC ;
27: ReturnL;

123

552 Journal of Global Optimization (2019) 73:547–565

3 The standardmodel

This section introduces the mathematical model for the containment and the non-overlapping
conditions of (1). We call the resulting model the standard constraint satisfaction problem
since it is the same for every subproblem. We assume that the squares have side length s.
The inequalities for the containment condition follow from the convexity of the circle. On
the other hand, non-overlapping constraints rely on the concept of sentinels [4,18].

3.1 Containment

Let Cr be the closed circle of radius r and centered at the origin. The convexity of the circle
implies that c ∈ Cr for any point c in the segment of line ab if a, b ∈ Cr . Then, a given
square belongs to Cr if and only if its vertices belong to Cr .

Let S0,0 be the open square centered at the origin, with no rotation angle and side length
s. Then

S0,0 := {
x ∈ R

2 | max(|x1|, |x2|) − s

2
< 0

}
.

We denote the closure of a set S by S. The set of vertices of S0,0 is given by

V0,0 := {V NW , V SW , V NE , V SE }
where

V NW :=
(− s

2
s
2

)
, V SW :=

(− s
2− s
2

)
, V NE :=

(s
2
s
2

)
, V SE :=

(s
2− s
2

)
.

For any c ∈ R
2 and θ ∈ R, we define the displacement operator as

h(c, θ, x) := c + Aθ x (2)

where Aθ is the rotation matrix

Aθ :=
(
cos(θ) − sin(θ)

sin(θ) cos(θ)

)
.

The open square centered at c ∈ R
2, with rotation angle θ ∈ [0, π

2) and side length s is
the set given by

Sc,θ := {
z ∈ R

2 | z = h(c, θ, x), x ∈ S0,0
}
. (3)

The set of vertices of Sc,θ , denoted by Vc,θ , is the union of the following points

V P
c,θ := c + AθV

P , P ∈ {NW , SW , NE, SE}.
Finally, we denote the circle of radius r and centered at the origin by Cr . Then

Cr := {x ∈ R
2 | x21 + x22 ≤ r2}.

Proposition 1 Let gr (x) := x21 + x22 − r2 and consider the following inequalities

gr (V
P
c,θ) ≤ 0, P ∈ {NW , SW , NE, SE} (4)

Then

Sc,θ ⊆ Cr ⇔ (4) hold.

123

Journal of Global Optimization (2019) 73:547–565 553

Fig. 1 a Non-overlapping
squares. b Vertex sentinel
violation. c Mid-point sentinel
violation. d Center sentinel
violation

(b)

(d)

(a)

(c)

Proof If Sc,θ ⊆ Cr then Vc,θ ⊆ Cr and (4) hold. Conversely, since Sc,θ is a bounded
polytope, it is given by the convex hull of the elements of Vc,θ . The result follows from the
convexity of the circle. 	

3.2 Non-overlapping

This subsection shows that two squares Sc1,θ1 and Sc2,θ2 are non-overlapping if and only a
set of nine points defined on Sc1,θ1 do not belong to Sc2,θ2 and vice-versa. We call such sets
sentinels of a square. Figure 1 illustrates the need of the sentinels in the non-overlapping
formulation.

The set of sentinels of S0,0 is given by

T0,0 := V0,0 ∪ {V N , V S, V E , VW , V O }
where

V N :=
(
0
s
2

)
, V S :=

(
0

− s
2

)
, V E :=

(s
2
0

)
, VW :=

(− s
2
0

)
, V O :=

(
0
0

)
.

We denote the set of sentinels of Sc,θ by Tc,θ . This set is given by the union of the following
points

T P
c,θ := c + AθV

P , P ∈ {NW , SW , NE, SE, N , S, E,W , O}.
The next theorem states that the non-overlapping condition between two squares reduces

to the containment verification of their sets of sentinels. It is a particular case of the sentinels
theorem proved in [18].

Theorem 1 Let Sci ,θi and Sc j ,θ j be two squares defined by (3) and let Tci ,θi and Tc j ,θ j be
their corresponding sets of sentinels. Then

Sci ,θi ∩ Sc j ,θ j = ∅ ⇔ Sci ,θi ∩ Tc j ,θ j = ∅ and Sc j ,θ j ∩ Tci ,θi = ∅.

In order to check conditions of form Sci ,θi ∩Tc j ,θ j = ∅ numerically, we need the definition
of the inverse of the displacement operator (2)

h−1(c, θ, z) := AT
θ (z − c).

Lemma 1 Let z ∈ R
2 and Sc,θ be a square defined by (3). Then

z ∈ Sc,θ ⇔ max(|h−1
1 (c, θ, z)|, |h−1

2 (c, θ, z)|) − s

2
< 0.

123

554 Journal of Global Optimization (2019) 73:547–565

where h−1
1 and h−1

2 are the coordinates of the inverse operator.

Proof If z ∈ Sc,θ then there exists x ∈ S0,0 such that x = h−1(c, θ, z) and the implication
follows immediately. Conversely, let x := h−1(c, θ, z). The left hand side of the equivalence
implies that x ∈ S0,0. If we let z′ := c + Aθ x then z′ = c + Aθ AT

θ (z − c) = z. Therefore
z ∈ Sc,θ and the result follows. 	

Applying the inverse of the displacement operator of the square Sci ,θi to the point T
P
c j ,θ j

∈
Tc j ,θ j gives

h−1(ci , θi , T
P
c j ,θ j) = AT

θi
(c j + Aθ j V

P − ci), V P ∈ T0,0. (5)

Let c j,1 and c j,2 be the coordinates of the vector c j . Then the coordinates of (5) are given
by

u1(ci , c j , θi , θ j , V) := cos(θi)(c j,1 − ci,1) − sin(θi)(c j,2 − ci,2)

+ cos(θi − θ j)V1 + sin(θi − θ j)V2

and

u2(ci , c j , θi , θ j , V) := sin(θi)(c j,1 − ci,1) + cos(θi)(c j,2 − ci,2) +
− cos(θi − θ j)V1 + cos(θi − θ j)V2.

The following proposition shows that the verification of Sci ,θi ∩ Tc j ,θ j = ∅ reduces to the
evaluation of nine non-smooth functions.

Proposition 2 Let Sci ,θi and Tc j ,θ j be as in Theorem 1 and define the function

u(ci , c j , θi , θ j , V
P) := max(|u1(ci , c j , θi , θ j , V

P)|, |u2(ci , c j , θi , θ j , V
P)|).

Then

Sci ,θi ∩ Tc j ,θ j = ∅ ⇔ u(ci , c j , θi , θ j , V
P) − s

2
≥ 0 for all V P ∈ T0,0.

Proof Follows from the application of the Lemma 1 to the elements of Tc j ,θ j . 	

3.3 The standardmodel

We conclude this section with the formal statement of the standard constraint satisfaction
problem. Here and throughout we assume, without loss of generality, that the angle of the
first square is always 0. This condition follows from the proper rotation of the remaining
squares into the circle.

Definition 1 [SCSP] Let r > 0 be an upper bound for the radius of the smallest circle into
which one can pack n non-overlapping unit squares and s be a scaling factor. We denote the
following problem by standard constraint satisfaction problem (SCSP)

find (r , c1, θ1, . . . , cn, θn) (6)

s.t. u(ci , c j , θi , θ j , V P) − s
2 ≥ 0

gr (V P
ci ,θi

) ≤ 0

ci,1, ci,2 ∈ [−r , r]
θi ∈ [0, π

2]
θ1 = 0

r ≤ r

123

Journal of Global Optimization (2019) 73:547–565 555

where i, j = 1, . . . , n with i �= j , V P ∈ T0,0 and V P
ci ,θi

∈ Vci ,θi . Functions gr and u are
given by Propositions 1 and 2 respectively.

4 Tiling

General purpose interval branch-and-boundprocedures cannot solve the SCSP in a reasonable
amount of time even for small values of n due to symmetries in the search space. This section
introduces a tiling method to split (6) into a set of subproblems suitable for the Algorithm 1.

We employ theMatlab-like notation g := a : s : b to denote the arraywith k := � b−a
s �+1

elements where gi := a + is for i = 0, . . . , k − 1. In addition, we denote the array with the
midpoints of g by gc. Then,

gc,i := gi + gi+1

2
, i = 0, . . . , k − 2.

Let r > 0 be an upper bound for the SCSP. Then, the step length

l := 2r

�2r + 1� (7)

splits [−r , r] into �2r + 1� equally divided intervals. Let V := {v ∈ R | v = −r +
il, i ∈ Z} ∩ [−r , r] be the end points of each interval, satisfying vi := −r + il for i =
0, . . . , p := �2r + 1�. Moreover, we write the midpoints of V as Vc where vc,i := vi + l

2
for i = 0, . . . , p − 1. Let V := V × V and C := Vc × Vc. We denote the elements of V by

vi, j :=
(

vi
v j

)
for vi , v j ∈ v and 0 ≤ i, j ≤ p. In the same way, we write the elements of C

as ci, j := vi, j +
(

l
2
l
2

)

for vi, j ∈ V and 0 ≤ i, j ≤ p − 1. Algorithm 2 produces the sets V

and C.

Algorithm 2 Unscaled tiling
Input: The upper bound r for the radius in the SCSP.
Output: The sets V and C containing the vertices of �o

i, j for 0 ≤ i, j ≤ p − 1 and o ∈ {T , L, D, R}.
1: l ← 2r

�2r+1� ;
2: v ← −r : l : r ;
3: V ← v × v;
4: C ← vc × vc;
5: return (V,C);

Let �ABC be the triangle with vertices A, B,C ∈ R
2. Then, we define the following

triangles for 0 ≤ i, j ≤ p − 1

�T
i, j := �vi, j+1vi+1, j+1ci, j ,

�L
i, j := �vi, j+1vi, j ci, j ,

�D
i, j := �vi, jvi+1, j ci, j ,

�R
i, j := �vi+1, jvi+1, j+1ci, j .

Here, T , L, D and R stand for top, left, down and right respectively. Figure 2 shows that
the definition aims to split the square with vertices vi, j , vi+1, j , vi+1, j+1 and vi, j+1 into four
triangles. One can easily verify that the triangles can be written as

123

556 Journal of Global Optimization (2019) 73:547–565

Fig. 2 The geometrical meaning
of �o

i, j for 0 ≤ i, j ≤ p − 1 and
o ∈ {T , L, D, R}

�T
i, j := {x ∈ R

2 | x2 − x1 ≥ g j − gi , x2 + x1 ≥ gi + g j+1,

x1 ∈ [gi , gi+1], x2 ∈ [g j + l

2
, g j+1]}, (8)

�L
i, j := {x ∈ R

2 | x2 − x1 ≥ g j − gi , x2 + x1 ≤ gi + g j+1,

x1 ∈ [gi , gi + l

2
], x2 ∈ [g j , g j+1]}, (9)

�D
i, j := {x ∈ R

2 | x2 − x1 ≤ g j − gi , x2 + x1 ≤ gi + g j+1,

x1 ∈ [gi , gi+1], x2 ∈ [g j , g j + l

2
]}, (10)

�R
i, j := {x ∈ R

2s | x2 − x1 ≤ g j − gi , x2 + x1 ≥ gi + g j+1,

x1 ∈ [gi + l

2
, gi+1], x2 ∈ [g j , g j+1]}. (11)

Lemma 2 is a collection of results needed in this section. In particular, Lemma 2-6 shows
that the union of triangles �o

i, j for 0 ≤ i, j ≤ p − 1 and o ∈ {T , L, D, R} tiles the search
domain associated to the center variables in the SCSP.

Lemma 2 Let l, p, v, vc,V,C and �o
i, j be defined as above. Then,

1. l < 1.
2. x ∈ v ⇒ − x ∈ v.
3. If vi, j ∈ V then v90i, j , v

180
i, j , v270i, j , vxi, j , v

y
i, j , v

I d
i, j , v

−I d
i, j ∈ V where

v90i, j :=
(−v j

vi

)
, v180i, j :=

(−vi
−v j

)
, v270i, j :=

(
v j

−vi

)
,

vxi, j :=
(

vi
−v j

)
, v

y
i, j :=

(−vi
v j

)
, v I d

i, j :=
(

v j

vi

)
, v−I d

i, j :=
(−v j

−vi

)
.

4. If ci, j ∈ C then c90i, j , c
180
i, j , c270i, j , cxi, j , c

y
i, j , c

Id
i, j , c

−I d
i, j ∈ C where the vectors are defined

analogously as above.

5. �o
i, j is an isosceles triangle with base length l and legs with length l

√
2

2 for 0 ≤ i, j ≤
p − 1 and o ∈ {T , L, D, R}.

6.

[−r , r]2 ≡
⋃

0≤i, j≤p
o∈{T ,L,D,R}

�o
i, j .

Proof 1. For a > 0, we have �a + 1� = a + 1− δ where δ ∈ [0, 1) is the fractional part of
a + 1. Then 1 − δ > 0 and �a + 1� > a. The result follows by taking a = 2r .

123

Journal of Global Optimization (2019) 73:547–565 557

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

0

1

2

3

4

5

6

7

8

9

10

11

1

2

3

4

5

6

7

8

9

10

11

0

20

21 23

22

16

17 19

18

12

13

14

15

20

21 23

22

16

17 19

18

12

13 15

32

33 35

34

28

29 31

30

24

25

26

27

32

33 35

34

28

29 31

30

24

25 27

14 26

Fig. 3 Left: Tiling for the square [−r3, r3]2 where r3 = 5
√
17

16 . Right: Tiling for the square [−3, 3]2

2. If x ∈ v then −x = r − il for some i ∈ 0, . . . , p. Let y = −r + jl and we need to
verify if there exists some j ∈ 0, . . . , p such that y = −x . The equality holds by taking
j = p − i .

3. If vi, j ∈ V then v j,i ∈ V and the result follows from the application of Lemma 2-2 of
this proposition to each case.

4. The proof is similar to the case above.
5. For �T

i, j , we have ‖vi, j+1 − vi+1, j+1‖ = l and

‖vi, j+1 − ci, j‖ = ‖vi+1, j+1 − ci, j‖ = l
√
2

2
.

The proof is similar for o ∈ {L, D, R}.
6. Let Si, j be the closed square with vertices vi, j , vi+1, j , vi+1, j+1, vi, j+1. Since v0 = −r

and vp = r it is clear that

[−r , r]2 ≡
⋃

0≤i, j≤p−1

Si, j .

The result follows by noting that

Si, j ≡
⋃

o∈{T ,L,D,R}
�o

i, j .

	

We also assign a label to each triangle in the tiling. It helps us to easily identify a specific
triangle during the proof of the case n = 3 in Sect. 5. Triangles of form�T

i, j receive an index
that is divisible by 4. In the same way, we assign labels to the left, down and right triangles
with the congruence classes 1, 2 and 3 modulo 4, respectively. We denote the triangle with
label i by Ti . Figure 3-Left shows the tiling for the best known upper bound of r3.

We show now that each triangle of form�o
i, j contains the center of at most one unit square.

Lemma 3 The minimal distance between the centers of two non-overlapping unit squares
is 1.

123

558 Journal of Global Optimization (2019) 73:547–565

Proof Assume the contrary, let pq be a line segment of the centers with lower than 1. Let Cp

andCq the circles of radius 1
2 drawn into the squares. ThenCp andCq intersect. But then since

the squares are supersets of Cp and Cq , respectively, they also intersect. A contradiction. 	

Proposition 3 Let �o

i, j for 0 ≤ i, j ≤ p − 1 and o ∈ {T , L, D, R} be as defined above. If
Sc1,θ1 and Sc2,θ2 are two unit squares such that c1, c2 ∈ �ABC then Sc1,θ1 ∩ Sc2,θ2 �= ∅.
Proof Lemma 2-1 shows that l < 1 and Lemma 2-5 gives that the base length of �o

i, j is l

while its legs have length l
√
2

2 . The result follows from Lemma 3. 	

Let K := 4p2 be the number of triangles in the tiling. Proposition 3 states that we can split

the SCSP into a set of
(K
n

)
subproblems. In each subproblem,we enforce that the center of each

square belongs to a given triangle. For example, one can define the subproblem T0T19T33 in
the same tiling displayed in Fig. 3-Left. In this case, we set the standard constraint satisfaction
problem defined in (1) and add to the model the linear inequalities given by Eqs. (8)–(11) for
�T

0,0, �R
1,1 and �L

2,2 respectively.
We conclude this subsection by proving that several subproblems can be discardedwithout

any processing due to symmetries in V and C. Let f 90, f 180, f 270 : R2 → R
2 be the linear

mappings that rotate the vector x ∈ R
2 by an angle of 90, 180 and 270 degrees respectively.

In the same way, define the linear mappings f x , f y, f I d , f −I d : R2 → R
2 as the reflections

around the lines x = 0, y = 0, y = x and y = −x respectively.

Proposition 4 Let �o
i, j for 0 ≤ i, j ≤ p − 1 and o ∈ {T , L, D, R} be a triangle of form (8)

to (11). Then, f op(�o
i, j) for op ∈ {90, 180, 270, r , x, I d,−I d} is a triangle of form �o′

i ′, j ′
with 0 ≤ i ′, j ′ ≤ p − 1 and o′ ∈ {T , L, D, R}.
Proof The triangle �o

i, j has two vertices in V and one vertex in C. Let A and B be the
vertices in V and C be the vertex in C. Lemma 2-3 ensures that f op(A), f op(B) ∈ V while
Lemma 2-4 gives that f op(C) ∈ C. Since rotations and reflections are rigid transformations,
the result holds. 	

Proposition 4 allows us to discard subproblems that are symmetric by rotations or reflec-

tions. For example, let r3 = 5
√
17

16 and r3, Sc1,θ1 , Sc2,θ2 , Sc3,θ3 be a feasible arrangement for
(6) with c1 ∈ T7, c2 ∈ T12 and c3 ∈ T22. Then, Proposition 4 ensures that there exists a
feasible arrangement r3, Sc′

1,θ
′
1
, Sc′

2,θ
′
2
, Sc′

3,θ
′
3
satisfying c′

1 ∈ T19, c′
2 ∈ T12 and c′

3 ∈ T22.
Moreover, since T19T12T22 is obtained by a reflection around the y axis of T7T12T22, we
know that c′

i = f y(ci) for i = 1, 2, 3.
The tiling produced by Algorithm 2 suffices if one wants to use a complete global opti-

mization approach for the packing problem. On the other hand, it is not suitable for a rigorous
approach since the elements in V and C are floating point vectors subject to rounding errors.
To overcome this problem, we introduce a scaled tiling. In this case, we ensure that the points
at V and C are integer vectors to the cost of working with squares that are not unit but have
the side length contained in a small interval s. Algorithm 3 produces the scaled vertices for
the tiling as well as the interval s.

The elements in V and C are integer vectors by construction. Then, the Eqs. (8)–(11) are
exactly representable. On the other hand, we replace the constant s in the Problem (6) by the
interval s to keep the mathematical certainty of our statements. The lemmas and propositions
in the last section remain valid after the proper scaling. Figure 3-Right illustrates the scaled

tiling for r3 = 5
√

(17)
16 . Note that the tiling would be the same for r4 = √

2 and the only
difference between both cases would be the scaling interval s.

123

Journal of Global Optimization (2019) 73:547–565 559

Algorithm 3 Scaled tiling method.
Input: The upper bound r for the radius in the SCSP.
Output: The sets of integer vectors V and C containing the vertices of �o

i, j for 0 ≤ i, j ≤ p − 1 and
o ∈ {T , L, D, R} and the scaling interval s.

1: l ← 2r
�2r+1� ;

2: s ← 2
l ;

3: m ← �2r + 1�;
4: v ← −m : 2 : m;
5: V ← v × v;
6: C ← vc × vc;
7: return (V,C) and s;

Markót and Csendes [24] propose tiling constraints for the circle packing problem based
on rectangles. The same idea could be used for the packing of squares into a circle. On the
other hand for the case n = 3, one would need to split the search domain in 144 squares
instead of 36 as proposed in this paper.

5 Packing 3 unit squares

Friedman [9] gives an upper bound for the case n = 3, r3 = 5
√
17

16 . Algorithm 3 gives the
tiling displayed in Fig. 3-Right and the interval scaling factor

s := [2.32834200034879, 2.32834200034880]. (12)

Figure 4-Left displays an optimal configuration associated to the scaled version of the prob-
lem. This section proves the theorem below.

Theorem 2 Let r3 be the solution of (1) for n = 3. Then,

r3 ∈ [1.28847050800547, 1.28847050800553].
Moreover, the parameters of Sc1,θ1 , Sc2,θ2 and Sc3,θ3 belong to the boxes in Table 6.

Proof We perform the computational part of the proof in a core i7 processor with a frequency
of 2.6GHz, 6GBofRAMandWindows 10.We compiled the code using the g++7.3 compiler
with the option −O3. A supplementary material for the proof, containing the statistics and
the log files for each subproblem is available in http://www.mat.univie.ac.at/~montanhe/
publications/n3.zip

We prove the theorem in three phases. At the i-th iteration, we consider instances of form
(6) and define subproblems by adding tiling constraints of form (8)–(11) accordingly.

The proof considers the scaled version of the problem to ensure themathematical certainty
of our statements. Therefore, the CSPs in this section are of form (6) with the constant s
replaced by the interval s in Eq. (12). We obtain the unscaled interval for r3 and Table 6 by
dividing every box found in the last iteration by s.

We also assume the labeling scheme for the triangles introduced in Sect. 4 and displayed
on Fig. 3-Right. Therefore, the subproblem T7T12T22 refers to the SCSP with the interval
scaling factor s and such that c1 ∈ T7 := �R

0,1, c2 ∈ T12 := �T
1,0 and c3 ∈ T22 := �D

1,2.
Phase 1 In this iteration, we are interested in reducing the search domain of each sub-

problem and finding triangles which can contain the center of squares with no rotation. The

123

http://www.mat.univie.ac.at/~montanhe/publications/n3.zip
http://www.mat.univie.ac.at/~montanhe/publications/n3.zip

560 Journal of Global Optimization (2019) 73:547–565

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

Fig. 4 Left: An optimal configuration for n = 3. Right: Triangles 7, 12 and 22 contain an optimal arrangement

Table 2 Instances discarded in the first phase without processing

Instance Symm. to Symm. type Instance Symm. to Symm. type

T2 T1 Ref. y = x T21 T6 Rot. 90◦
T3 T0 Ref. y = x T22 T12 Rot. 180◦
T6 T4 Ref. x = 0 T23 T6 Ref. y = −x

T8 T2 Ref. x = 0 T24 T3 Rot. 270◦
T9 T2 Rot. 90◦ T25 T3 Ref. y = 0

T10 T3 Rot. 90◦ T26 T2 Ref. y = 0

T11 T3 Ref. x = 0 T27 T2 Rot. 270◦
T12 T7 Rot. 270◦ T28 T6 Rot. 180◦
T13 T6 Ref. y = x T29 T12 Rot. 270◦
T14 T5 Rot. 270◦ T30 T6 Ref. y = 0

T15 T6 Rot. 270◦ T31 T14 Rot. 270◦
T17 T16 Rot. 270◦ T32 T2 Rot. 180◦
T18 T17 Rot. 270◦ T33 T3 Rot. 180◦
T19 T17 Rot. 180◦ T34 T3 Ref. y = −x

T20 T14 Rot. 180◦ T35 T2 Ref. y = −x

Symm. to stands for symmetric to. Symm. type shows the operation needed to obtain Instance from the element
in the second column

tiling has 36 triangles, but the symmetries in V and C reduce the number of subproblems to
6. Table 2 shows the instances discarded without any processing in the first phase.

Instances T0, T1, T4, T5, T7 and T16 require processing. We run the Algorithm 1 with
εT = 10−1, εC = 10−11, εx = 10−13 and time limit of 300 s. In this phase, we remove the
condition θ1 = 0 in Problem (6). Table 3 summarizes the results of the processed instances on
phase 1. It shows that T1 and T5 are infeasible and any combination containing one of these
triangles or their symmetric counterparts could be removed in the next phases. Moreover, it
shows that only triangles T7 and T16 can contain the center of a square with rotation angle 0.

123

Journal of Global Optimization (2019) 73:547–565 561

Table 3 Statistics for the
processed instances on phase 1

Instance Status Time(s) Steps θ

T0 Timeout 300 428253 [0.38528, 1.21015]
T1 Infeasible 1 1 -

T4 Timeout 300 421457 [0.33751, 1.51529]
T5 Infeasible 1 1 -

T7 Timeout 300 398689 [0, 1.5708]
T16 Timeout 300 336345 [0, 1.5708]
Status gives the termination status of the instance. Time(s) gives the
processing time in seconds. Column steps displays the number of calls of
the state machine described in Table 1. Column θ is a rigorous enclosure
for the rotation angle

Since we are assuming that θ1 = 0 in the optimal configuration for n = 3, we only have to
check the combinations containing at least one of these triangles.

Phase 2 This phase aims to discard as many instances as possible to reduce the number of
hard subproblems in the last iteration. There are 630 possible combinations of 36 triangles
taken 2 by 2. After eliminating symmetric and previously discarded cases, we obtain 43
instances. We also propagate any reduction in the search domain in the first phase to the
subproblems in the second phase. Again, we remove the condition θ1 = 0 from Problem (6).

We run the Algorithm 1 with εT = 10−1, εC = 10−11, εx = 10−13 and time limit of
3600 s. We stop the algorithm as soon as the feasibility verification method described in
Sect. 2 succeeds in finding a feasible point. The supplementary material contains the list of
all instances discarded without processing. Table 4 gives the statistics for the 43 processed
instances.

We conclude the second phase with 22 infeasible subproblems. Again, any case in the
next phase containing a combination found infeasible in this step can be discarded without
any processing.

Phase 3 In this phase we set the full model in Problem (6), including the constraint
θ1 = 0. Table 3 shows that c1 ∈ T7 or c1 ∈ T16. Therefore, after removing the cases where
one of these conditions do not hold and eliminating symmetric and already proved infeasible
subproblems, we obtain 12 instances of the 7140 possible ones.

If an instance contains both triangles T7 and T16, we denote by T7∗T16Tx the case where
we enforce the angle of the square centered in T7 to be zero. In the same way, we write
T7T16∗Tx for the instances where the square centered in T16 has no rotation angle.

For the last phase, we run Algorithm 1 with εT = 10−1, εC = 10−11, εx = 10−13 and no
time limit. Table 5 provides the statistics of the processed instances. Moreover, Table 5 shows
that it is the only instance containing the optimal configurations for n = 3. Figure 4-Right
shows an approximation of the center of each square in the optimal case.

Algorithm 1 produces 4 clusters for the instance T7T12T22. The maximum width of a
cluster is 6.23 ∗ 10−13. The precision is smaller than εx due to the cluster builder procedure
described in Sect. 2. Table 6 gives the unscaled clusters. 	

6 Conclusion

This paper presents a framework for the rigorous optimization of the packing of unit squares
into a circle. We express the question as the standard constraint satisfaction problem stated

123

562 Journal of Global Optimization (2019) 73:547–565

Table 4 Statistics for the processed instances on phase 2

Instance Status Time(s) Steps Instance Status Time(s) Steps

T7T17 Infeasible 1 17697 T0T28 Feasible 1 1

T7T19 Feasible 1 1 T0T29 Feasible 1 1

T7T29 Feasible 1 1 T0T30 Infeasible 1 11395

T16T17 Feasible 1 3 T0T33 Feasible 1 1

T16T18 Feasible 1 2 T0T34 Feasible 1 1

T0T3 Infeasible 1 81 T4T6 Infeasible 2 1603

T0T4 Infeasible 2 1211 T4T7 Infeasible 1 2657

T0T6 Infeasible 2 233 T4T12 Feasible 1 1

T0T7 Infeasible 2 2219 T4T13 Infeasible 1 13771

T0T10 Infeasible 1 861 T4T15 Feasible 1 1

T0T11 Infeasible 2 1059 T4T16 Infeasible 1 24983

T0T12 Infeasible 1 2527 T4T17 Infeasible 1 4923

T0T13 Infeasible 1 243 T4T18 Feasible 1 1

T0T15 Infeasible 2 1535 T4T19 Feasible 1 1

T0T16 Feasible 1 1 T4T21 Infeasible 1 705

T0T17 Infeasible 1 3397 T4T22 Infeasible 2 19323

T0T18 Infeasible 1 3889 T4T28 Feasible 1 1

T0T19 Feasible 1 1 T4T29 Feasible 1 1

T0T21 Infeasible 1 8021 T4T30 Feasible 1 1

T0T22 Feasible 1 1 T7T12 Feasible 1 1

T0T23 Feasible 1 1 T7T16 Feasible 1 1

T0T24 Infeasible 2 1227

Status gives the termination status of the instance. Time(s) gives the processing time in seconds. Column steps
displays the number of calls of the state machine described in Table 1

Table 5 Statistics for the
processed instances on phase 3

Instance Status Time(s) Steps

T7∗T12T16 Infeasible 33 146629

T7T12T16∗ Infeasible 134 440307

T7T12T22 Clusters found 628 2183739

T7∗T16T18 Infeasible 3 16901

T7T16∗T18 Infeasible 3 18273

T7∗T16T19 Infeasible 4 19729

T7T16∗T19 Infeasible 1 5491

T7∗T16T29 Infeasible 8 40345

T7T16∗T29 Infeasible 2 11071

T16T17T18 Infeasible 2 7319

T0T16T19 Infeasible 0 2833

T0T16T29 Infeasible 2 9317

Status gives the termination status of the instance. Time(s) gives the
processing time in seconds. Column steps displays the number of calls
of the state machine described in Table 1

123

Journal of Global Optimization (2019) 73:547–565 563

Ta
bl
e
6

E
nc
lo
su
re
s
of

th
e
op

tim
al
ar
ra
ng

em
en
tf
or

n
=

3

Sq
ua

re
c 1

c 2
θ

1
[−

0.
68

75
00

00
00

00
01

,
−0

.6
87

49
99

99
99

98
8]

[−
0.
00

00
00

00
00

00
18

,
0.
00

00
00

00
00

00
23

]
[0.

0,
0.
0]

2
[0.

31
24

99
99

99
99

93
,
0.
31

25
00

00
00

00
14

]
[−

0.
50

00
00

00
00

00
07

,
−0

.4
99

99
99

99
99

98
9]

[1.
57

07
96

32
67

94
26

,
1.
57

07
96

32
67

94
91

]
3

[0.
31

24
99

99
99

99
93

,
0.
31

25
00

00
00

00
11

]
[0.

49
99

99
99

99
99

92
,
0.
50

00
00

00
00

00
07

]
[−

0.
00

00
00

00
00

00
01

,
0.
00

00
00

00
00

00
50

]
1

[−
0.
68

75
00

00
00

00
01

,
−0

.6
87

49
99

99
99

98
8]

[−
0.
00

00
00

00
00

00
21

,
0.
00

00
00

00
00

00
12

]
[0.

0,
0.
0]

2
[0.

31
24

99
99

99
99

98
,
0.
31

25
00

00
00

00
19

]
[−

0.
50

00
00

00
00

00
03

,
−0

.4
99

99
99

99
99

99
0]

[−
0.
00

00
00

00
00

00
01

,
0.
00

00
00

00
00

00
36

]
3

[0.
31

24
99

99
99

99
93

,
0.
31

25
00

00
00

00
09

]
[0.

49
99

99
99

99
99

95
,
0.
50

00
00

00
00

00
07

]
[−

0.
00

00
00

00
00

00
01

,
0.
00

00
00

00
00

00
29

]
1

[−
0.
68

75
00

00
00

00
01

,
−0

.6
87

49
99

99
99

99
1]

[−
0.
00

00
00

00
00

00
12

,
0.
00

00
00

00
00

00
16

]
[0.

0,
0.
0]

2
[0.

31
24

99
99

99
99

93
,
0.
31

25
00

00
00

00
11

]
[−

0.
50

00
00

00
00

00
07

,
− 0

.4
99

99
99

99
99

99
3]

[1.
57

07
96

32
67

94
63

,
1.
57

07
96

32
67

94
91

]
3

[0.
31

24
99

99
99

99
98

,
0.
31

25
00

00
00

00
14

]
[0.

49
99

99
99

99
99

93
,
0.
50

00
00

00
00

00
04

]
[1.

57
07

96
32

67
94

53
,
1.
57

07
96

32
67

94
91

]
1

[−
0.
68

75
00

00
00

00
01

,
−0

.6
87

49
99

99
99

99
2]

[−
0.
00

00
00

00
00

00
14

,
0.
00

00
00

00
00

00
14

]
[0.

0,
0.
0]

2
[0.

31
24

99
99

99
99

98
,
0.
31

25
00

00
00

00
11

]
[−

0.
50

00
00

00
00

00
03

,
−0

.4
99

99
99

99
99

99
5]

[−
0.
00

00
00

00
00

00
01

,
0.
00

00
00

00
00

00
27

]
3

[0.
31

24
99

99
99

99
98

,
0.
31

25
00

00
00

00
11

]
[0.

49
99

99
99

99
99

95
,
0.
50

00
00

00
00

00
04

]
[1.

57
07

96
32

67
94

63
,
1.
57

07
96

32
67

94
91

]
T
he
re

ar
e
4
cl
us
te
rs
,e
ac
h
of

th
em

se
pa
ra
te
d
by

a
bl
an
k
lin

e.
T
he

fir
st
co
or
di
na
te
of

th
e
ce
nt
er

of
th
e
i-
th

sq
ua
re

is
gi
ve
n
by

c 1
an
d
th
e
se
co
nd

co
or
di
na
te
by

c 2
.T

he
ro
ta
tio

n
an
gl
e

is
gi
ve
n
by

θ

123

564 Journal of Global Optimization (2019) 73:547–565

by Definition 1. The model considers the concept of sentinels to formulate non-overlapping
constraints and the convexity of the squares and the circle to describe containment conditions.

General purpose rigorous optimization solvers cannot achieve the solution of the standard
constraint satisfaction problem due to symmetries in the search domain. To overcome this
difficulty, we propose a tiling method that splits the search space related to the center of
each unit square into isosceles triangles. Our tiling divides the original problem into a set of
subproblems that are suitable for the interval branch-and-bound approach. We also ensure
that the parameters in each subproblem are free of rounding errors by introducing a proper
scaling of the search domain.

To show the capabilities of our approach, we solve the first open case reported in the
literature, n = 3. We implement the interval branch-and-bound in the C++ and the code is
publicly available. We perform the proof on an ordinary laptop with 6 GB of RAM and a
core i7 processor.

The proof of the case n = 3 requires the solution of 6 subproblems with one square, 43
with two and only 12 with three squares. We discard most subproblems without processing
due to symmetries in the tiling. Among the 61 subproblems, just 6 require more than 100 s
to conclude the search. At the end of the process, we obtained 4 boxes with the following
properties

1. The maximum width of any coordinate of the resulting boxes is 6.23 ∗ 10−13.
2. If one disregard symmetries, every solution of (1) is contained in at least one of the 4

boxes

The method proposed in this paper could, in principle, be used to find the optimal arrange-
ment for higher values of n (e.g., n = 4, 5, 6.).

Acknowledgements Open access funding provided by Austrian Science Fund (FWF).

OpenAccess This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/),which permits unrestricted use, distribution, and repro-
duction in any medium, provided you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons license, and indicate if changes were made.

References

1. Bentz, W.: Optimal packings of 13 and 46 unit squares in a square. Electron. J. Comb. 17(1), R126 (2010)
2. Birgin, E.G., Lobato, R.D., Martínez, J.M.: Packing ellipsoids by nonlinear optimization. J. Glob. Optim.

65(4), 709–743 (2016)
3. Birgin, E.G., Lobato, R.D., Martínez, J.M.: A nonlinear programming model with implicit variables for

packing ellipsoids. J. Glob. Optim. 68(3), 467–499 (2017)
4. Birgin, E.G., Martínez, J.M., Mascarenhas, W.F., Ronconi, D.P.: Method of sentinels for packing items

within arbitrary convex regions. J. Oper. Res. Soc. 57(6), 735–746 (2006)
5. Castillo, I., Kampas, F.J., Pintér, J.D.: Solving circle packing problems by global optimization: Numerical

results and industrial applications. Eur. J. Oper. Res. 191(3), 786–802 (2008)
6. Chung, F., Graham, R.L.: Packing equal squares into a large square. J. Comb. Theory Ser. A 116, 1167–

1175 (2009)
7. Domes, F., Neumaier, A.: Rigorous verification of feasibility. J. Glob. Optim. 61, 255–278 (2015)
8. Erdös, P., Graham, R.L.: On packing squares with equal squares. J. Comb. Theory (A) 19(1), 9–123

(1975)
9. Friedman, E.: Erich packing center. http://www2.stetson.edu/~efriedma/packing.html. Accessed 4 Dec

2017
10. Friedman, E.: Packing unit squares in squares: a survey and new results. Electron. J. Comb. (2009)
11. Hansen, E.R.: Global Optimization Using Interval Analysis. Marcel Dekker Inc., New York (1992)

123

http://creativecommons.org/licenses/by/4.0/
http://www2.stetson.edu/~efriedma/packing.html

Journal of Global Optimization (2019) 73:547–565 565

12. Kallrath, J., Rebennack, S.: Cutting ellipses from area-minimizing rectangles. J. Glob. Optim. 59(2),
405–437 (2014)

13. Kearfott, R.B.: Rigorous Global Search: Continuous Problems. Kluwer Academic Publishers, Norwell
(1996)

14. Lerch, M., Tischler, G., Gudenberg, J.W.V., Hofschuster, W., Krämer, W.: Filib++, a fast interval library
supporting containment computations. ACM Trans. Math. Softw. 32(2), 299–324 (2006)

15. Markót, M.C.: Interval methods for verifying structural optimality of circle packing configurations in the
unit square. J. Comput. Appl. Math. 199(2), 353–357 (2007)

16. Markót,M.C., Csendes, T.: A newverified optimization technique for the “packing circles in a unit square”
problems. SIAM J. Optim. 16, 193–219 (2005)

17. Mascarenhas, W.F.: Moore: interval arithmetic in C++20. In: Barreto, G.A., Coelho, R. (eds.) Fuzzy
Information Processing, pp. 519–529. Springer, Cham (2018)

18. Mascarenhas, W.F., Birgin, E.G.: Using sentinels to detect intersections of convex and nonconvex poly-
gons. Comput. Appl. Math. 29(2), 247–267 (2010)

19. Nagamochi, H.: Packing unit squares in a rectangle. Electron. J. Comb. 12(1), R37 (2005)
20. Neumaier, A.: Interval Methods for Systems of Equations. Encyclopedia of Mathematics and Its Appli-

cations, vol. 37. Cambridge University Press, Cambridge (1990)
21. Schichl, H., Neumaier, A.: Interval analysis on directed acyclic graphs for global optimization. J. Glob.

Optim. 33(4), 541–562 (2005)
22. Specht, E.: Packomania. http://www.packomania.com/. Accessed 4 Dec 2017
23. Stromquist, W.: Packing 10 or 11 unit squares in a square. Electron. J. Comb. 10(8), 1–11 (2003)
24. Szabó, P.G., Markót, M.C., Csendes, T., Specht, E., Casado, L.G., García, I.: New Approaches to Circle

Packing in a Square—With Program Codes. Springer, Berlin (2008)

Affiliations

Tiago Montanher1,2 · Arnold Neumaier2 ·Mihály Csaba Markót1,2 ·
Ferenc Domes2 · Hermann Schichl2

Arnold Neumaier
Arnold.Neumaier@univie.ac.at

Mihály Csaba Markót
mihaly.markot@univie.ac.at

Ferenc Domes
ferenc.domes@univie.ac.at

Hermann Schichl
hermann.schichl@univie.ac.at

1 Wolfgang Pauli Institute, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria
2 Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria

123

http://www.packomania.com/
http://orcid.org/0000-0001-9730-5748

	Rigorous packing of unit squares into a circle
	Abstract
	1 Introduction
	1.1 Contribution and outline
	1.2 Interval notation

	2 The algorithm
	3 The standard model
	3.1 Containment
	3.2 Non-overlapping
	3.3 The standard model

	4 Tiling
	5 Packing 3 unit squares
	6 Conclusion
	Acknowledgements
	References

