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Abstract
We apply Heine’s method—the key idea Heine used in 1846 to derive his famous
transformation formula for 2φ1 series—to multiple basic series over the root system
of type A. In the classical case, this leads to a bibasic extension of Heine’s formula,
which was implicit in a paper of Andrews which he wrote in 1966. As special cases,
we recover extensions of many of Ramanujan’s 2φ1 transformations. In addition, we
extend previous work of the author regarding a bibasic extension of Andrews’ q-
Lauricella function, and show how to obtain very general transformation formulas of
this type. The results obtained include transformations of an n-fold sum into anm-fold
sum.

Keywords Bibasic Heine transformation formula · U (n + 1) basic hypergeometric
series · An basic hypergeometric series · Ramanujan’s 2φ1 transformations ·
q-Lauricella functions

Mathematics Subject Classification 33D65 · 33D67

1 Introduction: Heine’s method

Heine’s method, so named by Andrews and Berndt [4], was what Heine used to obtain
his celebrated transformation formula between two basic hypergeometric series. Using
Heine’s idea itself, we can extend Heine’s identity to a bibasic transformation formula
[6]. This was used to provide a unified treatment to many of Ramanujan’s 2φ1 trans-
formations presented in [4, Ch. 1]. The objective of this paper is to apply Heine’s idea
in the context of multiple basic hypergeometric series over the root systems of type A.
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It is useful to recall Heine’s method. We need the notation of q-rising factorials
from Gasper and Rahman [10]. The q-rising factorial is defined as (A; q)0 := 1, and
when k is a positive integer,

(A; q)k := (1 − A)(1 − Aq) · · · (1 − Aqk−1).

The parameter q is called the ‘base.’ The infinite q-rising factorial is defined, for
|q| < 1, as

(A; q)∞ :=
∞∏

r=0

(1 − Aqr ).

Observe that, for |q| < 1 [10, Eq. (I.5)],

(A; q)k = (A; q)∞(
Aqk; q)

∞
, (1.1)

an identity that is used to define q-rising factorials when k is an arbitrary complex num-
ber. The most fundamental of the q-summation theorems is the q-binomial theorem
[10, Eq. (1.3.2)]: For |z| < 1, |q| < 1

(az; q)∞
(z; q)∞

=
∞∑

k=0

(a; q)k

(q; q)k
zk . (1.2)

Heine’s transformation formula [10, Eq. (1.4.1)] is as follows. For |z| < 1, |b| < 1:

∞∑

k=0

(a; q)k(b; q)k

(c; q)k(q; q)k
zk = (b; q)∞(az; q)∞

(c; q)∞(z; q)∞

∞∑

j=0

(c/b; q) j (z; q) j

(az; q) j (q; q) j
b j . (1.3)

Heine’s [14] proof of his transformation formula uses the q-Binomial theorem, and is
as follows.

∞∑

k=0

(a; q)k(b; q)k

(q; q)k(c; q)k
zk = (b; q)∞

(c; q)∞

∞∑

k=0

(a; q)k

(q; q)k
zk

(
cqk; q)

∞(
bqk; q)

∞
(using (1.1))

= (b; q)∞
(c; q)∞

∞∑

k=0

(a; q)k

(q; q)k
zk

∞∑

j=0

(c/b; q) j

(q; q) j
(bqk) j (using (1.2))

= (b; q)∞
(c; q)∞

∞∑

j=0

(c/b; q) j

(q; q) j
b j

∞∑

k=0

(a; q)k

(q; q)k
(zq j )k

= (b; q)∞
(c; q)∞

∞∑

j=0

(c/b; q) j

(q; q) j
b j

(
azq j ; q)

∞(
zq j ; q)

∞
(using (1.2) again)

= (b; q)∞(az; q)∞
(c; q)∞(z; q)∞

∞∑

j=0

(c/b; q) j (z; q) j

(q; q) j (az; q) j
b j (using (1.1) again).
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Heine’s method and An to Am transformation formulas 193

There are several mild variations of Heine’s original idea that we will use in this
paper. Virtually the same proof works with more general bases qh and qt , where h
and t are complex numbers. This leads to a transformation formula that follows from
a very general identity of Andrews [2], but was stated explicitly only in [6, Eq. (2.4)].

∞∑

k=0

(
a; qh)k(
qh; qh)k

(
w; qt)hk

(bw; qt )hk
zk =

(
w; qt)∞

(
az; qh)∞

(bw; qt )∞
(
z; qh)∞

∞∑

j=0

(
b; qt) j

(qt ; qt ) j

(
z; qh)t j(
az; qh)t j

w j .

(1.4)
Here we require |qh | < 1, |qt | < 1, and |qht | < 1 for the q-rising factorials to be
defined, and |w| < 1 and |z| < 1 for absolute convergence of the two series. For details
of how to test for convergence, refer to [6]. This reduces to Heine’s transformation
when h = 1 = t , and (w, b) is replaced by (b, c/b).

The second variation of Heine’s idea comes from using multiple series extensions
of the q-binomial theorem, due to Milne [23], Milne and Lilly [24], Gustafson and
Krattenthaler [12], Kajihara [16], and one implicit in the work of the author with
Schlosser [9]. The series are all of the form

∑

kr≥0
r=1,2,...,n

S(k),

where k = (k1, . . . , kn) and k1, k2, . . . , kn are non-negative integers. The positive
integer n is called the dimension of the sum.When n = 1,we refer to the corresponding
identity as classical.We use the notation |k| := k1+· · ·+kn for the sumof components
ofk. These typeof series are recognizedby thepresenceof the so-called “Vandermonde
factor” of type A, namely,

∏

1≤r<s≤n

1 − qkr−ks xr/xs
1 − xr/xs

.

Sometimes this factor is hidden in the series. For example, here is an identity we
discovered during the course of our study. For |q| < 1, |qt | < 1, we have

(
(−aq)n; qn)∞

∑

jr≥0
r=1,...,m

( ∏

1≤r<s≤m

1 − qm( jr− js )+r−s

1 − qr−s

×
m∏

r=1

1

(qr ; q)mjr

· bm|j|

((−aq)n; qn)tm|j|

× q
2m

m∑
r=1

(r−1) jr−m(m−1)|j|
q

m∑
r=1

(mjr+1
2 )

)

= (
(−bq)m; qm)

∞
∑

kr≥0
r=1,...,n

( ∏

1≤r<s≤n

1 − qn(kr−ks )+r−s

1 − qr−s
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194 G. Bhatnagar

×
n∏

r=1

1

(qr ; q)nkr
· an|k|

((−bq)m; qm)tn|k|

× q
2n

n∑
r=1

(r−1)kr−n(n−1)|k|
q

n∑
r=1

(nkr+1
2 )

)
, (1.5)

obtained as a special case of (3.11) below. Compare this with Ramanujan’s identity
[4, Entry 1.4.17], to which (1.5) reduces when n and m are 1:

(−aq; q)∞
∞∑

j=0

b jq( j+1
2 )

(q; q) j (−aq; q)t j
= (−bq; q)∞

∞∑

k=0

akq(k+1
2 )

(q; q)k(−bq; q)tk
. (1.6)

Aswewill see, Heine’smethod, thoughmore than 150 years old, is still surprisingly
useful. In Sect. 2, we provide a few examples of multivariable transformation formulas
generalizing (1.4). A feature of these formulas is that they transform an n-dimensional
sum into an m-dimensional sum. This is followed by some examples of multiple
series extensions of Ramanujan’s transformations in Sect. 3. In the rest of the paper,
we explore some other variations of Heine’s method, leading eventually to a master
theorem describing such results in Sect. 5.

2 Heine’s method: the bibasic Heine transformation formula

In this section, we will give four multiple series extensions of (1.4), using different
An extensions of the q-binomial theorem. Our intention is to illustrate the approach,
not to provide a comprehensive list. There are six multiple q-binomial theorems of
this kind that can be combined together to give 21 such results.

We begin by using a theorem of Milne and Lilly [24, Th. 4.7]:

n∏

r=1

(ar z/xr ; q)∞
(z/xr ; q)∞

=
∑

kr≥0
r=1,...,n

( ∏

1≤r<s≤n

1 − qkr−ks xr/xs
1 − xr/xs

n∏

r ,s=1

(asxr/xs; q)kr

(qxr/xs; q)kr

× z|k|q
n∑

r=1
(r−1)kr

qe2(k)
n∏

r=1

x−kr
r

)
. (2.1)

The variables a1, . . . , an , x1, . . . , xn , and z are indeterminate, and are such that the
terms in the sum are well defined. We require |q| < 1 for convergence of the infinite
products. In addition, for convergence of the multiple series, we require |z/xr | < 1,
for r = 1, 2, . . . , n. Here we use the notation e2(k) for the elementary symmetric
function of degree 2 in the variables k = (k1, k2, . . . , kn). It is given by

e2(k) =
(|k|
2

)
−

n∑

r=1

(
kr
2

)
.
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Heine’s method and An to Am transformation formulas 195

Theorem 2.1 (A bibasic Heine transformation formula; An → Am) Let 0 < |qh | < 1,
0 < |qt | < 1, and 0 <

∣∣qht
∣∣ < 1. Further, let |z/xr | < 1, for r = 1, 2, . . . , n and

|w/yr | < 1, for r = 1, 2, . . . ,m. Then

∑

kr≥0
r=1,...,n

( ∏

1≤r<s≤n

1 − qh(kr−ks )xr/xs
1 − xr/xs

n∏

r ,s=1

(
asxr/xs; qh

)
kr(

qhxr/xs; qh
)
kr

×
m∏

r=1

(
w/yr ; qt

)
h|k|

(brw/yr ; qt )h|k|
· z|k|q

h
n∑

r=1
(r−1)kr

qhe2(k)
n∏

r=1

x−kr
r

)

=
m∏

r=1

(
w/yr ; qt

)
∞

(brw/yr ; qt )∞
n∏

r=1

(
ar z/xr ; qh

)
∞(

z/xr ; qh
)
∞

×
∑

jr≥0
r=1,...,m

( ∏

1≤r<s≤m

1 − qt( jr− js )yr/ys
1 − yr/ys

m∏

r ,s=1

(
bs yr/ys; qt

)
jr

(qt yr/ys; qt ) jr

×
n∏

r=1

(
z/xr ; qh

)
t |j|(

ar z/xr ; qh
)
t |j|

· w|j|q
t

m∑
r=1

(r−1) jr
qte2(j)

m∏

r=1

y− jr
r

)
. (2.2)

Proof The proof is very similar in structure to the proof of (1.3). We begin with the
left-hand side, and write the factors

m∏

r=1

(
w/yr ; qt

)
h|k|

(brw/yr ; qt )h|k|

as

m∏

r=1

(
w/yr ; qt

)
∞

(brw/yr ; qt )∞
·

m∏

r=1

(
brwqth|k|/yr ; qt

)
∞(

wqth|k|/yr ; qt
)
∞

.

We now use the n = m, xr �→ yr , q �→ qt , z �→ wqth|k|, and as �→ bs case of (2.1)
to expand the second product. In this manner, we obtain a double sum, which can be
represented symbolically as follows:

m∏

r=1

(
w/yr ; qt

)
∞

(brw/yr ; qt )∞
∑

kr≥0
r=1,...,n

∑

jr≥0
r=1,...,m

(· · · )q(th|k|)|j|.

On interchanging the sums, this can be written as

m∏

r=1

(
w/yr ; qt

)
∞

(brw/yr ; qt )∞
∑

jr≥0
r=1,...,m

∑

kr≥0
r=1,...,n

(· · · )q(th|j|)|k|.
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196 G. Bhatnagar

Now the q �→ qh and z �→ zqth|j| case of (2.1), and an elementary computation using
(1.1) immediately yield the right-hand side. ��

Remark 2.2 The absolute convergence of the series involved is shown using the mul-
tiple power series ratio test, and standard methods given in, for example, Milne [23].
See also [6] where convergence requirements of terms such as

(
w; qt)hk is explained.

The condition 0 <
∣∣qht

∣∣ < 1 comes from such terms. The conditions 0 < |qh | < 1
and 0 < |qt | < 1 are required for the convergence of the infinite products appearing
in the transformation formula. From now on, we will refer to these conditions as the
usual convergence conditions.

Observe that the An q-binomial theorem (2.1) is used twice in the proof of (2.2). A
variation of this procedure is to use (2.1) and another An q-binomial theorem. In the
next transformation formula, we use an An q-binomial theorem obtained as a special
case from an An 1ψ1 sum of Gustafson and Krattenthaler [12, Eq. (1.10)], where we
set B = q and relabel some parameters. This result is for |z| < 1,

n∏

r=1

(
azqr−1; q)

∞(
zqr−1; q)

∞
=

∑

kr≥0
r=1,...,n

( ∏

1≤r<s≤n

1 − qkr−ks xr/xs
1 − xr/xs

×
n∏

r=1

(a; q)kr

(q; q)kr
· z|k|q

n∑
r=1

(r−1)kr
)

. (2.3)

Theorem 2.3 (A bibasic Heine transformation formula; An → Am) In addition to the
usual convergence conditions, let |w| < 1 and |z/xr | < 1, for r = 1, 2, . . . , n. Then

∑

kr≥0
r=1,...,n

( ∏

1≤r<s≤n

1 − qh(kr−ks )xr/xs
1 − xr/xs

n∏

r ,s=1

(
asxr/xs; qh

)
kr(

qhxr/xs; qh
)
kr

×
m∏

r=1

(
wqt(r−1); qt)h|k|(
bwqt(r−1); qt)h|k|

· z|k|q
h

n∑
r=1

(r−1)kr
qhe2(k)

n∏

r=1

x−kr
r

)

=
m∏

r=1

(
wqt(r−1); qt)∞(
bwqt(r−1); qt)∞

n∏

r=1

(
ar z/xr ; qh

)
∞(

z/xr ; qh
)
∞

×
∑

jr≥0
r=1,...,m

( ∏

1≤r<s≤m

1 − qt( jr− js )yr/ys
1 − yr/ys

m∏

r=1

(
b; qt) jr

(qt ; qt ) jr

×
n∏

r=1

(
z/xr ; qh

)
t |j|(

ar z/xr ; qh
)
t |j|

· w|j|q
t

m∑
r=1

(r−1) jr
)

. (2.4)
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Heine’s method and An to Am transformation formulas 197

Proof The proof is analogous to the proof of Theorem 2.1. The only difference is that
we use (2.3) on the left-hand side to expand it as a double sum. The series on the
right-hand side converges when |w| < 1. ��

Observe that two An q-binomial theorems, namely (2.1) and (2.3), are used in the
proof of (2.4). Both are special cases of (2.4). Take h = 1 and c = b to recover (2.1).
Instead, set t = 1, ar = 1 for r = 1, 2, . . . , n to obtain (2.3), after some re-labeling
of parameters.

Next we use an An q-binomial theorem with an extra parameter. For |z| < 1:

(a1 · · · anz; q)∞
(z; q)∞

=
∑

kr≥0
r=1,...,n

( ∏

1≤r<s≤n

1 − qkr−ks xr/xs
1 − xr/xs

n∏

r ,s=1

(asxr/xs; q)kr

(qxr/xs; q)kr

×
n∏

r=1

(cxr/a1 · · · an; q)kr (cxr ; q)|k|
(cxr ; q)kr (cxr/ar ; q)|k|

· z|k|q
n∑

r=1
(r−1)kr

)
. (2.5)

This follows easily from a fundamental lemma in the author’s work with Schlosser
[9, Th. 11.2], where we take p = 0. Observe that (2.5) reduces to (1.2), the classical
q-binomial theorem when n = 1, but has an extra parameter c which appears when
n > 1. When c = 0, it reduces to an An q-binomial theorem of Milne [23, Th. 5.38].
However, on examining the proof in [9] carefully, we see that (2.5) follows from an
An generalization of Jackson’s sum due to Milne [21, Th. 6.17]. More precisely, if
we expand the left-hand side using the classical q-binomial theorem, and compare
coefficients of zN , we obtain a result which is an An−1 generalization of a Jackson
summation theorem (written in the form [7, Lemma 3.26] or [25, Th. 5.1] with p = 0).

Theorem 2.4 (A bibasic Heine transformation formula; An → Am) In addition to the
usual convergence conditions, let |z| < 1 and |w| < 1. Then,

∑

kr≥0
r=1,...,n

( ∏

1≤r<s≤n

1 − qh(kr−ks )xr/xs
1 − xr/xs

n∏

r ,s=1

(
asxr/xs; qh

)
kr(

qhxr/xs; qh
)
kr

· z|k|q
h

n∑
r=1

(r−1)kr

×
n∏

r=1

(
cxr/a1 · · · an; qh

)
kr

(
cxr ; qh

)
|k|(

cxr ; qh
)
kr

(
cxr/ar ; qh

)
|k|

·
(
w; qt)h|k|

(b1 · · · bmw; qt )h|k|

)

=
(
w; qt)∞

(b1 · · · bmw; qt )∞

(
a1 · · · anz; qh

)
∞(

z; qh)∞

×
∑

jr≥0
r=1,...,m

( ∏

1≤r<s≤m

1 − qt( jr− js )yr/ys
1 − yr/ys

m∏

r ,s=1

(
bs yr/ys; qt

)
jr

(qt yr/ys; qt ) jr
· w|j|q

t
m∑

r=1
(r−1) jr

×
m∏

r=1

(
dyr/b1 · · · bm; qt) jr

(
dyr ; qt

)
|j|

(dyr ; qt ) jr (dyr/br ; qt )|j|
·

(
z; qh)t |j|(

a1 · · · anz; qh
)
t |j|

)
. (2.6)
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198 G. Bhatnagar

Proof The proof involves the use of (2.5) twice and is very similar to the proof of
Theorem 2.1. We leave the details to the reader. ��

Observe that when n = 1 = m in (2.6), then the parameters c and d disappear, and
we obtain (1.4).

Finally, we note one more formula, obtained by combining the c = 0 case of
(2.5) (a summation formula of Milne [23, Th. 5.38]) with (2.1). These An q-binomial
theorems were among the first ones in this theory, and therefore we felt it appropriate
to end with a formula combining the two.

Theorem 2.5 (A bibasic Heine transformation formula; An → Am) In addition to the
usual convergence conditions, let |z| < 1 and |w/yr | < 1, for r = 1, 2, . . . ,m. Then

∑

kr≥0
r=1,...,n

( ∏

1≤r<s≤n

1 − qh(kr−ks )xr/xs
1 − xr/xs

n∏

r ,s=1

(
asxr/xs; qh

)
kr(

qhxr/xs; qh
)
kr

×
m∏

r=1

(
w/yr ; qt

)
h|k|

(brw/yr ; qt )h|k|
· z|k|q

h
n∑

r=1
(r−1)kr

)

=
m∏

r=1

[ (
w/yr ; qt

)
∞

(brw/yr ; qt )∞

] (
a1a2 · · · anz; qh

)
∞(

z; qh)∞

×
∑

jr≥0
r=1,...,m

( ∏

1≤r<s≤m

1 − qt( jr− js )yr/ys
1 − yr/ys

m∏

r ,s=1

(
bs yr/ys; qt

)
jr

(qt yr/ys; qt ) jr

×
(
z; qh)t |j|(

a1a2 · · · anz; qh
)
t |j|

w|j|q
t

m∑
r=1

(r−1) jr
qte2(j)

m∏

r=1

y− jr
r

)
. (2.7)

Proof The proof involves the use of (2.5) (with c = 0) and (2.1) and is very similar
to the proof of Theorem 2.1. ��

Wewill not provide any further An bibasic Heine transformations. But it is perhaps
useful to note the various types of products that appear on the product sides of other
q-binomial theorems in the literature. The following are the product sides of An q-
binomial theorems due to Milne [23, Th. 5.40], Milne [23, Th. 5.42], and Kajihara
[16, Eq. (3.6)], respectively,

n∏
r=1

(azxr ; q)∞

(z; q)∞
,

(az; q)∞
(z; q)∞

, and
n∏

r=1

(ar z/xr ; q)∞
(ar z/a1a2 · · · anxr ; q)∞

.

For all the above, one can write down multiple series bibasic Heine transformations
with two sets of factors chosen from the 6 sets given by the product sides of the
different q-binomial theorems. Unfortunately, the An q-binomial theorem due to the
author and Schlosser [8] is not amenable to Heine’s method.
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Heine’s method and An to Am transformation formulas 199

3 Special cases: Ramanujan’s 2�1 transformations

In this section,wefindmultiple series extensions ofmany ofRamanujan’s 2φ1 transfor-
mation formulas. These are special cases of the An to Am bibasic Heine transformation
formulas. In the classical case, this was done in [6], which, in turn, is an addendum
to Andrews and Berndt [4, Ch. 1]. The identity central to the study of Ramanujan’s
transformations is given by [6, Eq. (3.1)] (mildly rewritten)

(
aqt ; qt)∞

(
cqh+1; qh)∞(−bqt+1; qt)∞

(
dqh; qh)∞

∞∑

j=0

(−bq/a; qt) j
(qt ; qt ) j

(
dqh; qh)t j(
cqh+1; qh)t j

(aqt ) j

=
∞∑

k=0

(
cq/d; qh)k(
qh; qh)k

(
aqt ; qt)hk(−bqt+1; qt)hk

(dqh)k . (3.1)

Again, h and t are complex numbers, and we have the usual convergence conditions,
namely, |qh | < 1, |qt | < 1, and |qht | < 1. Further, for the series to converge, we
require |aqt | < 1 and |dqh | < 1.This is equivalent to (1.4), aswe can see by relabelling
the parameters as follows: a �→ cq/d, b �→ −bq/a, w �→ aqt , and z �→ dqh . When
h = 2 and t = 1, this reduces to an equivalent form of Ramanujan’s Entry 1.4.1 in [4,
§1.4].

In the special caseswe consider,many of the products appearing in the sum simplify.
Our first set of examples is obtained as special cases of Theorem 2.3.

Corollary 3.1 (An extension of (3.1); Am → An) Aside from the usual convergence
conditions, let |aqtm | < 1 and |dqhn| < 1. Then

m∏

r=1

(
aqtmr ; qtm)

∞(−bqtmr+1; qtm)
∞

·
(
cqh+1; qh)∞(
dqh; qh)∞

×
∑

jr≥0
r=1,...,m

( ∏

1≤r<s≤m

1 − qt(m( jr− js )+r−s)

1 − qt(r−s)

m∏

r=1

(−bq/a; qtm)
jr

(qtm; qtm) jr

×
(
dqh; qh)tmn|j|(
cqh+1; qh)tmn|j|

· (aqtm)|j|q
tm

m∑
r=1

(r−1) jr
)

=
∑

kr≥0
r=1,...,n

( ∏

1≤r<s≤n

1 − qh(n(kr−ks )+r−s)

1 − qh(r−s)

n∏

r=1

(
cq1+h(r−n)/d; qh)nkr(

qhr ; qh)nkr

×
m∏

r=1

(
aqtmr ; qtm)

hn|k|(−bq1+tmr ; qtm)
hn|k|

× (dqhn)|k|q
h(n−1)

n∑
r=1

(r−1)kr
qhne2(k)

)
. (3.2)
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Proof We first obtain an equivalent formulation of (2.4) by taking ar �→ crq/d (for
r = 1, 2, . . . , n), z �→ dqh , b �→ −bq/a, and w �→ aqt . In this manner, we obtain
an extension of (3.1). In the resulting identity, we take c1 = c2 = · · · = cn = c,
h �→ hn, t �→ tm, and specialize xr and yr as follows:

xr �→ qh(r−1) (for r = 1, 2, . . . , n)

yr �→ qt(r−1) (for r = 1, 2, . . . ,m).

With these special cases, several products appearing in the sum simplify. We note two
examples of how different factors simplify.

n∏

r ,s=1

(
cxrq/dxs; qh

)
kr(

qhxr/xs; qh
)
kr

−→
n∏

r=1

(
cq1+h(r−n)/d; qh)nkr(

qhr ; qh)nkr
,

n∏

r=1

(
dqh/xr ; qh

)

t |j| −→
(
dqh; qh

)

tmn|j|.

Both of these simplifications are obtained using the elementary identity [10, Eq. (I.27)]

(a; q)nk =
(
a, aq, . . . , aqn−1; qn

)

k
.

It should now be clear how (3.2) is obtained. ��
We can have many Am → An generalizations of (3.1) on the lines of (3.2). Special

cases of these results lead to multiple series generalizations of many of Ramanujan’s
transformation formulas from [4, Ch. 1].We give a small sample of possibilities below,
to illustrate the kinds of formulas that can be obtained. We have kept a convention of
keeping the index j for the Am series, and index k for the An series, to make it easy
for the reader to see how the identities are obtained from the corresponding bibasic
Heine transformations.

Next we consider the case a → 0 and c = 0 in (3.2). In the resulting identity, set
b �→ −a/q and d �→ b, and then take h = t = 1, and a = b = 1. In this manner,
we obtain the following identity, which is a generalization of Ramanujan’s [4, Entry
1.4.10]. For |q| < 1:

∑

kr≥0
r=1,...,n

( ∏

1≤r<s≤n

1 − qn(kr−ks )+r−s

1 − qr−s

n∏

r=1

1

(qr ; q)nkr

m∏

r=1

1

(qmr ; qm)n|k|

× qn|k|q
(n−1)

n∑
r=1

(r−1)kr
qne2(k)

)

= 1

(q; q)∞

m∏

r=1

1

(qmr ; qm)∞
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×
∑

jr≥0
r=1,...,m

( ∏

1≤r<s≤m

1 − qm( jr− js )+r−s

1 − qr−s
· (q; q)mn|j|

m∏
r=1

(qm; qm) jr

× (−1)|j|q
m

m∑
r=1

(r−1) jr
q
m

m∑
r=1

( jr+1
2 )

)
. (3.3)

When m = 1, this reduces to

∑

kr≥0
r=1,...,n

( ∏

1≤r<s≤n

1 − qn(kr−ks )+r−s

1 − qr−s

n∏

r=1

1

(qr ; q)nkr
· 1

(q; q)n|k|

× qn|k|q
(n−1)

n∑
r=1

(r−1)kr
qne2(k)

)

= 1

(q; q)2∞

∞∑

j=0

(q; q)nj

(q; q) j
(−1) j q

j( j+1)
2 . (3.4)

Compare these formulas with Ramanujan’s own formula [4, Entry 1.4.10], obtained
when n = m = 1:

∑

k≥0

qk

(q; q)2k
= 1

(q; q)2∞

∞∑

j=0

(−1) j q
j( j+1)

2 . (3.5)

We can obtain extensions of Entry 1.4.10 from other bibasic Heine transformations.
For the sake of comparison, we present one obtained from Theorem 2.5. We take
ar �→ crq/d (for r = 1, 2, . . . , n), z �→ dnqh , br �→ −brq/a (for r = 1, 2, . . . ,m),
andw �→ aqt . In this manner, we obtain an extension of (3.1). In the resulting identity,
we take b1 = b2 = · · · = bm = b, c1 = c2 = · · · = cn = c, h �→ hn, t �→ tm, and
specialize xr and yr as follows:

xr �→ qh(r−1) (for r = 1, 2, . . . , n)

yr �→ qt(r−1) (for r = 1, 2, . . . ,m).

Next we take b = 0 and d → 0, replace c by b/q. Finally, we take h = t = 1 and
a = b = 1 to obtain, for |q| < 1:

∑

jr≥0
r=1,...,m

( ∏

1≤r<s≤m

1 − qm( jr− js )+r−s

1 − qr−s

m∏

r=1

1

(qr ; q)mjr

· 1

(qn; qn)m|j|

× qm|j|q
(m−1)

n∑
r=1

(r−1) jr
qme2(j)

)
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= 1

(q; q)∞(qn; qn)∞
×

∑

kr≥0
r=1,...,n

( ∏

1≤r<s≤n

1 − qn(kr−ks )+r−s

1 − qr−s
· (q; q)mn|k|

n∏
r=1

(qr ; q)nkr

× (−1)n|k|q
2n

n∑
r=1

(r−1)kr−n(n−1)|k|
q

n∑
r=1

(nkr+1
2 )

)
. (3.6)

When n = 1, this reduces to (3.4). But if m = 1, we obtain

∞∑

j=0

q j

(q; q) j (qn; qn) j
= 1

(q; q)∞(qn; qn)∞
∑

kr≥0
r=1,...,n

( ∏

1≤r<s≤n

1 − qn(kr−ks )+r−s

1 − qr−s

× (q; q)n|k|
n∏

r=1
(qr ; q)nkr

(−1)n|k|q
2n

n∑
r=1

(r−1)kr−n(n−1)|k|
q

n∑
r=1

(nkr+1
2 )

)
. (3.7)

Next we consider another fruitful limiting case of (3.1), where we take a → 0 and
d → 0. This limiting case yields many identities of Ramanujan.

We cannot take the limit as d → 0 in (3.2) unless n = 1. So we take n = 1, and
a → 0 and d → 0 and then take c �→ −a/q and b �→ b/q. In this manner, assuming
the usual convergence conditions, we obtain

(
−aqh; qh

)

∞
∑

jr≥0
r=1,...,m

( ∏

1≤r<s≤m

1 − qt(m( jr− js )+r−s)

1 − qt(r−s)

m∏

r=1

1

(qtm; qtm) jr

× b|j|
(−aqh; qh)tm|j|

q
tm

m∑
r=1

(r−1) jr
q
tm

m∑
r=1

( jr+1
2 )

)

=
m∏

r=1

(−bqtmr ; qtm)
∞

∞∑

k=0

akqh(
k+1
2 )

(
qh; qh)k

m∏
r=1

(−bqtmr ; qtm)hk

. (3.8)

Compare this identity with the identity [6, Eq. (3.17)]:

(
−aqh; qh

)

∞

∞∑

j=0

b jqt(
j+1
2 )

(qt ; qt ) j
(−aqh; qh)t j

= (−bqt ; qt)∞
∞∑

k=0

akqh(
k+1
2 )

(
qh; qh)k(−bqt ; qt )hk

. (3.9)
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We can take h = t in (3.8) and let q �→ q1/t , to obtain an extension of (1.6). For
|q| < 1, |qt | < 1:

(−aq; q)∞
∑

jr≥0
r=1,...,m

( ∏

1≤r<s≤m

1 − qm( jr− js )+r−s

1 − qr−s

m∏

r=1

1

(qm; qm) jr

× b|j|

(−aq; q)tm|j|
q
m

m∑
r=1

(r−1) jr
q
m

m∑
r=1

( jr+1
2 )

)

=
m∏

r=1

(−bqmr ; qm)
∞

∞∑

k=0

akq(k+1
2 )

(q; q)k

m∏
r=1

(−bqmr ; qm)tk

. (3.10)

Next we obtain analogous results from the c = 0 = d case of (2.6). First, we obtain
a result analogous to (3.2). We take ar �→ crq/d (for r = 1, 2, . . . , n), z �→ dnqh ,
br �→ −brq/a (for r = 1, 2, . . . ,m), and w �→ amqt . In this manner, we obtain
an extension of (3.1). In the resulting identity, we take b1 = b2 = · · · = bm = b;
c1 = c2 = · · · = cn = c, h �→ hn, t �→ tm, and specialize xr and yr as follows:

xr �→ qh(r−1) (for r = 1, 2, . . . , n)

yr �→ qt(r−1) (for r = 1, 2, . . . ,m).

Next, we take the limits as a → 0 and d → 0, replace c by −a/q and b by b/q and
obtain the following identity.

(
(−aqh)n; qhn

)

∞
∑

jr≥0
r=1,...,m

( ∏

1≤r<s≤m

1 − qt(m( jr− js )+r−s)

1 − qt(r−s)

×
m∏

r=1

1

(qtr ; qt )mjr

· bm|j|
(
(−aqh)n; qhn)tm|j|

× q
2tm

m∑
r=1

(r−1) jr−tm(m−1)|j|
q
t

m∑
r=1

(mjr+1
2 )

)

= (
(−bqt )m; qtm)

∞
∑

kr≥0
r=1,...,n

( ∏

1≤r<s≤n

1 − qh(n(kr−ks )+r−s)

1 − qh(r−s)

×
n∏

r=1

1(
qhr ; qh)nkr

· an|k|

((−bqt )m; qtm)hn|k|

× q
2hn

n∑
r=1

(r−1)kr−hn(n−1)|k|
q
h

n∑
r=1

(nkr+1
2 )

)
. (3.11)
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Again, we require the usual convergence conditions. Note that the summands on either
side have powers of q that are quadratic in the indices of summation. This ensures that
we need no further conditions on a and b for the series to converge.

In the classical case, i.e., when n = m = 1, this reduces to (3.9). If we take h = t
in (3.11) and replace q by q1/t , we obtain (1.5), an identity we highlighted in the
introduction. Further, take t = 1, a = −1, b = 1, and n = m in (1.5) to obtain

∑

jr≥0
r=1,...,m

( ∏

1≤r<s≤m

1 − qm( jr− js )+r−s

1 − qr−s

m∏

r=1

1

(qr ; q)mjr

· 1

(qm; qm)m|j|

× q
2m

m∑
r=1

(r−1) jr−m(m−1)|j|
q

m∑
r=1

(mjr+1
2 )

)

= ((−q)m; qm)∞
(qm; qm)∞

×
∑

kr≥0
r=1,...,m

( ∏

1≤r<s≤m

1 − qm(kr−ks )+r−s

1 − qr−s

m∏

r=1

1

(qr ; q)mkr

· (−1)m|k|

((−q)m; qm)m|k|

× q
2m

m∑
r=1

(r−1)kr−m(m−1)|k|
q

m∑
r=1

(mkr+1
2 )

)
. (3.12)

Compare this with Ramanujan’s [4, Entry 1.4.9]

∞∑

j=0

q( j+1
2 )

(q; q)2j
= (−q; q)∞

(q; q)∞

∞∑

k=0

(−1)kq(k+1
2 )

(q; q)k(−q; q)k
, (3.13)

where we have used
(
q2; q2)k = (q; q)k(−q; q)k to rephrase [4, Entry 1.4.9]. Con-

sider once more (1.5), with t = 1, a = −1, b = 1, and n = 1. In this case, we obtain
the following extension of (3.13).

∑

jr≥0
r=1,...,m

( ∏

1≤r<s≤m

1 − qm( jr− js )+r−s

1 − qr−s

m∏

r=1

1

(qr ; q)mjr

· 1

(q; q)m|j|

× q
2m

m∑
r=1

(r−1) jr−m(m−1)|j|
q

m∑
r=1

(mjr+1
2 )

)

= ((−q)m; qm)∞
(q; q)∞

∞∑

k=0

(−1)kq(k+1
2 )

(q; q)k((−q)m; qm)k
. (3.14)

The above should serve to demonstrate the kind of multiple series extensions of
Ramanujan 2φ1 transformations possible. Rewriting the bibasic Heine transformations
in a format extending identity (3.1) is the key idea to obtain such special cases. From
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then on, the calculations shown in [6] can be used to find such transformations. As
we have seen, some special cases simplify the products appearing in the identities.
Clearly, many, many generalizations of Ramanujan’s identities can be obtained in this
manner.

4 A variation: using the q-Euler transformation formula

In Heine’s method, instead of the q-Binomial Theorem, we can use the second iterate
of Heine’s transformation (a q-analogue of Euler’s transformation of hypergeometric
functions) [10, Eq. (1.4.3)]. Let |q| < 1, |z| < 1 and |abz/c| < 1. Then

∞∑

k=0

(a, b; q)k

(q, c; q)k
zk = (abz/c; q)∞

(z; q)∞

∞∑

j=0

(c/a, c/b; q) j

(q, c; q) j
(abz/c) j . (4.1)

Note that when c = b, this reduces to the q-binomial theorem. Using the q-analogue
of Euler’s transformation formula, we obtain the following transformation formula of
double sums.

Theorem 4.1 Aside from the usual convergence conditions (see Remark 2.2), let |z| <

1, |w| < 1, |abzqht/c| < 1, and |dewqht/ f | < 1. Then

∑

k≥0

(
a, b; qh)k(
qh, c; qh)k

(
w; qt)hk

(dew/ f ; qt )hk
zk

∑

k̃≥0

(
f /d, f /e; qt)k̃
(qt , f ; qt )̃k

(
dewqhtk/ f

)k̃

=
(
w; qt)∞

(dew/ f ; qt )∞

(
abz/c; qh)∞(

z; qh)∞

×
∑

j≥0

(
d, e; qt) j

(qt , f ; qt ) j

(
z; qh)t j(

abz/c; qh)t j
w j

∑

j̃≥0

(
c/a, c/b; qh) j̃(
qh, c; qh) j̃

(
abzqht j/c

) j̃
.

(4.2)

Proof The proof is a straightforward extension of the proof of (1.3). We use (4.1) with
two sets of variables (a, b, c, z) with base qh and (d, e, f , w) with base qt . The rest
of the details are quite similar. We give more details when extending to multiple series
below. ��

Note that when c = b and f = e, then (4.2) reduces to (1.4).
There are many An extensions of (4.1). They follow from multiple series exten-

sions of Bailey’s 10φ9 transformation formulas. See [8, Th. 5.15], for an example of
this calculation. Many of them can be used to generalize (4.2). As an example, we
use a result of Kajihara [15, Th. 1.1]. We chose this particular transformation for-
mula, because it was one of the first results which transformed an An series into an
Am series—and therefore, its existence was an important motivation of our work.
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Kajihara’s transformation formula can be stated as follows. For |z| < 1:

∑

kr≥0
r=1,...,n

( ∏

1≤r<s≤n

1 − qkr−ks xr/xs
1 − xr/xs

n∏

r ,s=1

(asxr/xs; q)kr

(qxr/xs; q)kr

×
n∏

r=1

m∏

s=1

(bsxr ys; q)kr

(cxr ys; q)kr
z|k|q

n∑
r=1

(r−1)kr
)

= (a1 · · · anb1 · · · bmz/cm; q)∞
(z; q)∞

×
∑

jr≥0
r=1,...,m

( ∏

1≤r<s≤m

1 − q jr− js yr/ys
1 − yr/ys

m∏

r ,s=1

(cyr/bs ys; q) jr

(qyr/ys; q) jr

×
m∏

r=1

n∏

s=1

(cxs yr/as; q) jr

(cxs yr ; q) jr

× (
a1 · · · anb1 · · · bmz/cm

)|j|
q

m∑
r=1

(r−1) jr
)

. (4.3)

Using Heine’s method on this transformation formula, we obtain the following
transformation formula of double multiple sums.

Theorem 4.2 (An extension of (4.2); An-Aν → Am-Aμ) Let |z| < 1, |w| < 1,∣∣a1 · · · anb1 · · · bμzqth/cμ
∣∣ < 1, and

∣∣d1 · · · dme1 · · · eνwqth/ f ν
∣∣ < 1. In addition,

suppose the usual convergence conditions apply. Then, we have

∑

kr≥0
r=1,...,n

( ∏

1≤r<s≤n

1 − qh(kr−ks )xr/xs
1 − xr/xs

n∏

r ,s=1

(
asxr/xs; qh

)
kr(

qhxr/xs; qh
)
kr

×
n∏

r=1

μ∏

s=1

(
bsxr Xs; qh

)
kr(

cxr Xs; qh
)
kr

×
(
w; qt)h|k|

(d1 · · · dme1 · · · eνw/ f ν; qt )h|k|
· z|k|q

h
n∑

r=1
(r−1)kr

×
∑

k̃r≥0
r=1,...,ν

( ∏

1≤r<s≤ν

1 − qt (̃kr−k̃s )Yr/Ys
1 − Yr/Ys

ν∏

r ,s=1

(
f Yr/esYs; qt

)
k̃r

(qtYr/Ys; qt )̃kr

×
ν∏

r=1

m∏

s=1

(
f ysYr/ds; qt

)
k̃r

( f ysYr ; qt )̃kr
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×
(
d1 · · · dme1 · · · eνwqth|k|/ f ν

)|̃k|
q
t

ν∑
r=1

(r−1)̃kr
))

=
(
w; qt)∞

(
a1 · · · anb1 · · · bμz/cμ; qh)∞

(d1 · · · dme1 · · · eνw/ f ν; qt )∞
(
z; qh)∞

×
∑

jr≥0
r=1,...,m

( ∏

1≤r<s≤m

1 − qt( jr− js )yr/ys
1 − yr/ys

m∏

r ,s=1

(
ds yr/ys; qt

)
jr

(qt yr/ys; qt ) jr

×
m∏

r=1

ν∏

s=1

(
es yrYs; qt

)
jr

( f yrYs; qt ) jr

×
(
z; qh)t |j|(

a1 · · · anb1 · · · bμz/cμ; qh)t |j|
· w|j|q

t
m∑

r=1
(r−1) jr

×
∑

j̃r≥0
r=1,...,μ

( ∏

1≤r<s≤μ

1 − qh( j̃r− j̃s )Xr/Xs

1 − Xr/Xs

μ∏

r ,s=1

(
cXr/bs Xs; qh

)
j̃r(

qh Xr/Xs; qh
)
j̃r

×
μ∏

r=1

n∏

s=1

(
cxs Xr/as; qh

)
j̃r(

cxs Xr ; qh
)
j̃r

×
(
a1 · · · anb1 · · · bμzq

th|j|/cμ
)|̃j|

q
h

μ∑
r=1

(r−1) j̃r
))

. (4.4)

Proof The proof is similar to the proof to that of Theorem 2.1. We indicate the steps
symbolically. First represent (4.3) symbolically as

∑

k

L(a, b, c; x; z; q; n; k) = P(a, b, c; z; q)
∑

j

R(a, b, c; y; z; q;m; j).

Of course,m shows up on the left-hand side too, and n appears on the right-hand side,
but we suppress it for clarity. (Similarly, we suppress some other symbols too.) The
symbols L, P, and R are code for Left, Products, and Right, respectively. We will use
two copies of this result. Let us represent the summands of the corresponding left-
hand sides by L1 and L2, and similarly have corresponding P1, P2, R1, R2. We have

L1 = L(a, b, c; x; zqht |j|; qh; n; k) and R1 = R(a, b, c; X; zqht |j|; qh;μ; j̃);
L2 = L(d, e, f ; y;wqht |k|; qt ;m; j) and R2 = R(d, e, f ; Y ;wqht |k|; qt ; ν; k̃).

Let P1 and P2 be the corresponding products.
The first copy of (4.3) is a An → Aμ transformation, where we use the indices of

summation k and j̃ , and the second copy is a Am → Aν transformation, with indices
of summation j and k̃.
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We now see that the left-hand side can be written as
(
w; qt)∞

(d1 · · · dme1 · · · eνw/ f ν; qt )∞
∑

k

(· · · ) × P2
∑

k̃

R2

=
(
w; qt)∞

(d1 · · · dme1 · · · eνw/ f ν; qt )∞
∑

k

(· · · ) ×
∑

j

L2

=
(
w; qt)∞

(d1 · · · dme1 · · · eνw/ f ν; qt )∞
∑

j

(· · · ) ×
∑

k

L1

=
(
w; qt)∞

(d1 · · · dme1 · · · eνw/ f ν; qt )∞
∑

j

(· · · ) × P1
∑

j̃

R1

=
(
w; qt)∞

(d1 · · · dme1 · · · eνw/ f ν; qt )∞

(
a1 · · · anb1 · · · bμz/cμ; qh)∞(

z; qh)∞

∑

j

(· · · )
∑

j̃

R1.

We recognize the right-hand side at the last step. This completes the proof. ��

5 Iterating Heine’s method: Andrews’ q-Lauricella transformation

We now present another variation, where Heine’s method is iterated, to obtain a trans-
formation formula that transforms a multiple sum to a single sum. This was first done
by Andrews [3, Eq. (4.1)] when he obtained his transformation formula for the q-
Lauricella function. Andrews’ formula was generalized to a multibasic formula by
Agarwal, Jain, and Choi [1], and independently, the author [6], which is what we
extend to An series in this section. More precisely, we will indicate how such general-
izations can be achieved, and show a couple of samples. A result of this type transforms
multiple multiple sums, into a single multiple sum.

We use the symbol for the dot product

h · k = h1k1 + h2k2 + · · · + h pkp.

With this notation, we have the formula given by [1, Th. 2.2] and [6, Eq. (5.1)]:

∑

kr≥0
r=1,...,p

p∏

r=1

(
ar ; qhr

)
kr(

qhr ; qhr )kr

(
w; qt)h·k

(bw; qt )h·k

p∏

r=1

zkrr

=
(
w; qt)∞

(bw; qt )∞
p∏

r=1

(
ar zr ; qhr

)
∞(

zr ; qhr
)
∞

∞∑

j=0

(
b; qt) j

(qt ; qt ) j
p∏

r=1

(
zr ; qhr

)
t j(

ar zr ; qhr
)
t j

w j . (5.1)

The relevant convergence conditions are direct extensions of the conditions in (1.4)
to which the identity reduces when p = 1. When ar �→ br , b �→ c/a, w �→ a, and
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h1 = h2 = · · · h p = 1 = t , then (5.1) reduces to a transformation of Andrews for
q-Lauricella functions [3, Eq. (4.1)].

Note that the left-hand side of (5.1) is a p-fold sum and the right-hand side is a
single sum. The identity has p + 1 bases, namely, qt and qh1 , . . . , qhp . Note further
that if p = 1, then it reduces to (1.4).

Before proceeding with describing its An extension, we recall the key idea of the
proof from [6]. The idea is to iterate Heine’s method p times. The first step of the
proof is as follows:

∑

kr≥0
r=1,...,p

p∏

r=1

(
ar ; qhr

)
kr(

qhr ; qhr )kr

(
w; qt)h·k

(bw; qt )h·k

p∏

r=1

zkrr

=
(
w; qt)∞

(bw; qt )∞
∑

kr≥0
r=1,...,p

p∏

r=1

(
ar ; qhr

)
kr(

qhr ; qhr )kr

(
bwqt(h1k1+···+h pkp); qt

)

∞(
wqt(h1k1+···+h pkp); qt

)

∞

p∏

r=1

zkrr

=
(
w; qt)∞

(bw; qt )∞
∑

kr≥0
r=1,...,p

p∏

r=1

(
ar ; qhr

)
kr(

qhr ; qhr )kr

p∏

r=1

zkrr

∞∑

j=0

(
b; qt ) j

(qt ; qt ) j
w j qt j(h1k1+···+h pkp)

=
(
w; qt)∞

(bw; qt )∞
∑

kr≥0
r=1,...,p−1

p−1∏

r=1

(
ar ; qhr

)
kr(

qhr ; qhr )kr

p−1∏

r=1

zkrr

×
∞∑

j=0

(
b; qt) j

(qt ; qt ) j
w j qt j(h1k1+···+h p−1kp−1)

∑

kp≥0

(
ap; qhp

)
kp(

qhp ; qhp
)
kp

(
z pq

t jh p
)kp

=
(
w; qt)∞

(bw; qt )∞
∑

kr≥0
r=1,...,p−1

p−1∏

r=1

(
ar ; qhr

)
kr(

qhr ; qhr )kr

p−1∏

r=1

zkrr

×
∞∑

j=0

(
b; qt) j

(qt ; qt ) j
w j qt j(h1k1+···+h p−1kp−1)

(
apz pqt jh p ; qhp

)
∞(

z pqt jh p ; qhp
)
∞

=
(
w; qt)∞

(bw; qt )∞

(
apz p; qhp

)
∞(

z p; qhp
)
∞

∑

kr≥0
r=1,...,p−1

p−1∏

r=1

(
ar ; qhr

)
kr(

qhr ; qhr )kr

p−1∏

r=1

zkrr

×
∞∑

j=0

(
b; qt) j

(qt ; qt ) j

(
z p; qhp

)
t j(

apz p; qhp
)
t j

w j qt j(h1k1+···+h p−1kp−1).

A careful look at this first step indicates how a multivariable generalization will go.
To describe our generalization, we work symbolically. First, represent a (generic)
q-binomial theorem as
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∑

k≥0

S(x; n; a, z; q,k) = P(x; n; a, z; q),

where x = (x1, . . . , xn) and k ≥ 0 stands for kr ≥ 0, for r = 1, 2, . . . , n. This is
used to represent any of the q-binomial theorems, such as (2.1), (2.3), or indeed any
q-binomial theorem we have alluded to earlier (or indeed if such a theorem exists).
(The symbol a can represent a1, . . . , an as demanded by the context.)

To make our remarks more precise, we isolate the property required for Heine’s
method to work. Define a Property H as follows. A q-binomial theorem of the form∑

k≥0 S(x; n; a, z; q,k) = P(x; a, z; q) is said to satisfy Property H if

S(x; n; a, zH ; q,k) = H |k|S(x; n; a, z; q,k).

Presumably, our result will have p multi-sums corresponding to the left-hand side
of (5.1). So we use the symbols and conventions

n1, n2, . . . , n p;
xr = (xr1, xr2, . . . , xrnr ) for r = 1, 2, . . . , p;

(k1,k2, . . . ,kp);
kr = (kr1, kr2, . . . , krnr ) for r = 1, 2, . . . , p.

The p sumswill have dimensions n1, . . . , n p, andwewill use the index of summations
kr in the r th sum. We need p copies of S and P . Let us say that

Sr = S(xr ; nr ; ar , zr ; qhr ;kr ) and Pr (zr ; qhr ) = P(xr ; nr ; ar , zr ; qhr ).

In addition to the above q-binomial theorems represented by (Sr , Pr ), we require one
that we represent as

Sbase = S(y;m; b, w; qt ; j) and Pbase(w; qt ) = P(y;m; b, w; qt ).

Here the subscript represents a ‘base’ q-binomial theorem which we choose from any
one of the given options. There is one more symbol which we will use to represent
calculations of the type

1(
z; qh)tk

=
(
zqthk; qh)∞(
z; qh)∞

.

We will use

Q(z; qh; k) = P(zqhk; qh)/P(z; qh).

With these symbols, we can now state our generalization of (5.1).
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Theorem 5.1 (A Master theorem) Let (Sr , Pr ) for r = 1, . . . , p, and (Sbase, Pbase)
each represent any multiple series q-binomial theorem satisfying Property H, and let
the Q’s be as above. Then, under suitable convergence conditions, we have

∑

kr≥0
r=1,...,p

p∏

r=1

Sr · Qbase(w; qt ; h1|k1| + · · · + h p|kp|)

=

p∏
r=1

Pr (zr ; qhr )
Pbase(w; qt )

∑

j≥0

Sbase

p∏

r=1

Qr (zr ; qhr ; t |j|). (5.2)

Proof The proof is a straightforward iteration of Heine’s method, and is left to the
reader. ��
Remark Recall the results of Sect. 4. We see that the summands on both sides of (4.3)
satisfy Property H . So we can intermix q-binomial theorems with transformation
formulas too.

Theorem 5.1 is stated in very general terms and is a master theorem for results in
this paper. The results of Sect. 2 are contained in the p = 1 case of this result. We
illustrate the statement by writing down two examples explicitly.

First we take p = 2, and combine q-binomial theorems appearing in the work of
Milne and Lilly, Gustafson and Krattenthaler, and one implicit in the author’s work
with Schlosser.

We take (2.5) as our base (Sbase, Pbase(w; qt )). Next let (S1, P1) from (2.1), and
(S2, P2) from (2.3). Now Theorem 5.1 reduces to

∑

k1r≥0
r=1,...,n1

∑

k2r≥0
r=1,...,n2

( ∏

1≤r<s≤n1

1 − qh1(k1r−k1s )x1r/x1s
1 − x1r/x1s

×
∏

1≤r<s≤n2

1 − qh2(k2r−k2s )x2r/x2s
1 − x2r/x2s

×
n1∏

r ,s=1

(
a1s x1r/x1s; qh1

)
k1r(

qh1x1r/x1s; qh1
)
k1r

n2∏

r=1

(
a2; qh2

)
k2r(

qh2; qh2)k2r

×
(
w; qt)h1|k1|+h2|k2|

(b1 · · · bmw; qt )h1|k1|+h2|k2|
z|k1|1 z|k2|2

× q
h1

n1∑
r=1

(r−1)k1r+h2
n2∑
r=1

(r−1)k2r
qh1e2(k1)

n∏

r=1

x−k1r
1r

)

=
n1∏

r=1

(
a1r z1/x1r ; qh1

)
∞(

z1/x1r ; qh1
)
∞

n2∏

r=1

(
a2z2qh2(r−1); qh2)∞(
z2qh2(r−1); qh2)∞

·
(
w; qt)∞

(b1 · · · bmw; qt )∞
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×
∑

jr≥0
r=1,...,m

( ∏

1≤r<s≤m

1 − qt( jr− js )yr/ys
1 − yr/ys

m∏

r ,s=1

(
bs yr/ys; qt

)
jr

(qt yr/ys; qt ) jr

×
m∏

r=1

(
cyr/b1 · · · bm; qt) jr

(
cyr ; qt

)
|j|

(cyr ; qt ) jr (cyr/br ; qt )|j|
· w|j|q

t
m∑

r=1
(r−1) jr

×
n1∏

r=1

(
z1/x1r ; qh1

)
t |j|(

a1r z1/x1r ; qh1
)
t |j|

·
n2∏

r=1

(
z2qh2(r−1); qh2)t |j|(
a2z2qh2(r−1); qh2)t |j|

)
. (5.3)

Here, for convergence, we require |qhr | < 1, |qt | < 1, and |qthr | < 1 for r = 1, 2;
|w| < 1, and |z| < 1.

In our second example of an extension of (5.1), we take p �→ p + 1, (Sr , Pr )
(for r = 1, 2, . . . , p) to all be the 1-variable q-binomial theorem (1.2). We take
h1 = h2 = · · · = h p = h. For (Sp+1, Pp+1) and the base (Sbase, Pbase(w; qt )), we
take the c = 0 = d case of (2.5) with bases qh and qt , respectively. In this manner we
obtain, assuming the usual convergence conditions, |z| < 1, |w| < 1, and |ur | < 1
(for r = 1, 2, . . . , p)

∑

lr≥0
r=1,...,p

∑

kr≥0
r=1,...,n

( ∏

1≤r<s≤n

1 − qh(kr−ks )xr/xs
1 − xr/xs

n∏

r ,s=1

(
asxr/xs; qh

)
kr(

qhxr/xs; qh
)
kr

×
p∏

r=1

(
cr ; qh

)
lr(

qh; qh)lr
·

(
w; qt)h(|k|+|l|)

(b1b2 · · · bmw; qt )h(|k|+|l|)

p∏

r=1

ulrr · z|k|q
h

n∑
r=1

(r−1)kr
)

=
(
w; qt)∞

(
a1a2 · · · anz; qh

)
∞

(b1b2 · · · bmw; qt )∞
(
z; qh)∞

p∏

r=1

(
crur ; qh

)
∞(

ur ; qh
)
∞

×
∑

jr≥0
r=1,...,m

( ∏

1≤r<s≤m

1 − qt( jr− js )yr/ys
1 − yr/ys

m∏

r ,s=1

(
bs yr/ys; qt

)
jr

(qt yr/ys; qt ) jr

×
(
z; qh)t |j|(

a1a2 · · · anz; qh
)
t |j|

p∏

r=1

(
ur ; qh

)
t |j|(

crur ; qh
)
t |j|

· w|j|q
t

m∑
r=1

(r−1) jr
)

. (5.4)

Note that we have used product of n q-binomial theorems to deal with a product of
the form

n∏

r=1

(ar xr ; q)∞
(xr ; q)∞

.

So the list at the end of Sect. 2 is not a complete list.
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6 Summary and credits

The objective of this paper is to study Heine’s method as applied to series of type A.
It is a continuation of our work [6], which arose while studying Andrews and Berndt
[4, Ch. 1]. We conclude by summarizing our work and pointing out related ideas in
the literature.

In Sect. 2, we gave some examples of multiple series generalizations of the bibasic
Heine transformation. These (and other similar formulas) can be obtained using the
q-binomial theorems in [9,12,16,23,24]. Our results transform an n-dimensional series
to a multiple of anm-dimensional series. Early examples of such identities were given
by Gessel and Krattenthaler [11], Kajihara [15], and Kajihara and Noumi [17].

Previously, Gustafson and Krattenthaler [12,13] gave An Heine transformation for-
mulas. However, Heine’s method is not applicable to obtain their results. It would be
interesting to see whether their work extends to generalize the bibasic Heine transfor-
mation, and examine the generalizations of Ramanujan’s 2φ1 transformations (if any),
as has been done in Sect. 3.

Section 3 contains extensions of some of Ramanujan’s 2φ1 transformations from
Andrews and Berndt [4, Ch. 1]. In this regard, the usefulness of the bibasic Heine
transformation was pointed out in [6]. These special cases are chosen to bring the
multivariable identities close to Ramanujan’s own identities. They are motivated by
previous work of, for example, Milne [22] and Krattenthaler [19] (who proved a
conjecture of Warnaar). We remark that there is much more in Andrews’ work [2]
(where Heine’s method is examined in detail) which we expect to study on another
occasion.

In Sect. 4 we demonstrate that Heine’s method can be applied to transformation
formulas too, and gain some understanding of when this method applies. This leads
to the master theorem of Sect. 5, which follows by iterating Heine’s method. This
extends the bibasic version of Andrews’ transformation formula for the q-Lauricella
function given by Agarwal, Jain, and Choi [1], and independently, by the author [6].
Previously, Milne [23, §7] gave such results, but we feel our approach and results are
truer to Andrews’ original formulation of his results.

We have already noted that the master theorem applies to using transformation for-
mulas as in Sect. 4. In addition, we mention that the multivariable q-binomial theorem
of Macdonald [20] (see Kaneko [18, Th. 3.5]) is also amenable to Heine’s method,
and can be intermixed with above-mentioned q-binomial theorems. The Property H
follows from the homogeneity of the Macdonald polynomials. If we apply Heine’s
method to Macdonald’s q-binomial theorem, we obtain bibasic Heine transformation
formulas different in character from, but perhaps not as deep as, the Heine transfor-
mation formula given by Baker and Forrester [5]. However, what is interesting in our
approach is that we can intermix the two kinds of series. See also Warnaar [26, Th.
2.3] for amultivariable, dimension changing, formula—which extends Heine’s second
transformation formula [10, Eq. (1.4.5)].

Acknowledgements Open access funding provided by Austrian Science Fund (FWF).We thank the anony-
mous referee for helpful suggestions.
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