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Abstract
The Alternating Minimization Algorithm has been proposed by Paul Tseng to solve
convex programming problems with two-block separable linear constraints and objec-
tives, whereby (at least) one of the components of the latter is assumed to be strongly
convex. The fact that one of the subproblems to be solved within the iteration process
of this method does not usually correspond to the calculation of a proximal operator
through a closed formula affects the implementability of the algorithm. In this paper,
we allow in each block of the objective a further smooth convex function and propose
a proximal version of the algorithm, which is achieved by equipping the algorithm
with proximal terms induced by variable metrics. For suitable choices of the latter,
the solving of the two subproblems in the iterative scheme can be reduced to the
computation of proximal operators. We investigate the convergence of the proposed
algorithm in a real Hilbert space setting and illustrate its numerical performances on
two applications in image processing and machine learning.
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1 Introduction

Tseng introduced in [1] the so-called Alternating Minimization Algorithm (AMA)
to solve optimization problems with two-block separable linear constraints and two
nonsmooth convex objective functions, one of these assumed to be strongly convex.
The numerical scheme consists in each iteration of two minimization subproblems,
each involving one of the two objective functions, and of an update of the dual sequence
which approaches asymptotically a Lagrange multiplier of the dual problem.

The strong convexity of one of the objective functions allows to reduce the corre-
sponding minimization subproblem to the calculation of the proximal operator of a
proper, convex and lower semicontinuous function. This is for the second minimiza-
tion problem in general not the case; thus, with the exception of some very particular
cases, one has to use a subroutine in order to compute the corresponding iterate. This
may have a negative influence on the convergence behaviour of the algorithm and
affect its computational tractability. One possibility to avoid this is to properly modify
this subproblem with the aim of transforming it into a proximal step, and, of course,
without losing the convergence properties of the algorithm. The papers [2] and [3]
provide convincing evidences for the efficiency and versatility of proximal point algo-
rithms for solving nonsmooth convex optimization problems; we also refer to [4] for
a block coordinate variable metric forward–backward method.

In this paper, we address in a real Hilbert space setting a more involved two-block
separable optimization problem, which is obtained by adding in each block of the
objective a further smooth convex function. To solve this problem, we propose a
so-called Proximal Alternating Minimization Algorithm (Proximal AMA), which is
obtained by inducing in each of the minimization subproblems additional proximal
terms defined by means of positively semidefinite operators. The two smooth convex
functions in the objective are evaluated via gradient steps. For appropriate choices
of these operators, we show that the minimization subproblems turn into proximal
steps and the algorithm becomes an iterative scheme formulated in the spirit of the
full splitting paradigm. We show that the generated sequence converges weakly to a
saddle point of the Lagrangian associated with the optimization problem under inves-
tigation. The numerical performances of Proximal AMA are illustrated in particular in
comparisonwithAMAfor two applications in image processing andmachine learning.

A similarity of AMA to the classical Alternating Direction Method of Multipli-
ers (ADMM) algorithm, introduced by Gabay and Mercier [5], is obvious. In [6–8]
(see also [9,10]), proximal versions of the ADMM algorithm have been proposed and
proved to provide a unifying framework for primal-dual algorithms for convex opti-
mization. Parts of the convergence analysis for the Proximal AMA are carried out in
a similar spirit to the convergence proofs in these papers.
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2 Preliminaries

The convex optimization problems addressed in [1] are of the form

inf
x∈Rn ,z∈Rm

f (x) + g(z) s.t. Ax + Bz = b, (1)

where f : Rn → R := R ∪ {±∞} is a proper, γ -strongly convex with γ > 0 (this
means that f − γ

2 ‖ · ‖2 is convex) and lower semicontinuous function, g : Rm → R

is a proper, convex and lower semicontinuous function, A ∈ R
r×n, B ∈ R

r×m and
b ∈ R

r .
For c > 0, the augmented Lagrangian associated with problem (1), Lc : Rn×R

m ×
R
r → R reads

Lc(x, z, p) = f (x) + g(z) + 〈p, b − Ax − Bz〉 + c

2
‖Ax + Bz − b‖2.

The Lagrangian associated with problem (1) is

L : Rn × R
m × R

r → R, L(x, z, p) = f (x) + g(z) + 〈p, b − Ax − Bz〉.

Tseng proposed the following so-called Alternating Minimization Algorithm
(AMA) for solving (1):

Algorithm 2.1 (AMA) Choose p0 ∈ R
r and a sequence of strictly positive stepsizes

(ck)k≥0. For all k ≥ 0, set:

xk = argminx∈Rn

{
f (x) − 〈pk, Ax〉

}
(2)

zk ∈ argminz∈Rm

{
g(z) − 〈pk, Bz〉 + ck

2
‖Axk + Bz − b‖2

}
(3)

pk+1 = pk + ck(b − Axk − Bzk). (4)

The main convergence properties of this numerical algorithm are summarized in
the theorem below (see [1]).

Theorem 2.1 Let A 
= 0 and (x, z) ∈ ri(dom f )× ri(dom g) be such that the equality
Ax + Bz = b holds. Assume that the sequence of stepsizes (ck)k≥0 satisfies

ε ≤ ck ≤ 2γ

‖A‖2 − ε ∀k ≥ 0,

where 0 < ε <
γ

‖A‖2 . Let (x
k, zk, pk)k≥0 be the sequence generated by Algorithm 2.1.

Then there exist x∗ ∈ R
n and an optimal Lagrange multiplier p∗ ∈ R

r associated
with the constraint Ax + Bz = b such that

xk → x∗, Bzk → b − Ax∗, pk → p∗(k → +∞).
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If the function z �→ g(z) + ‖Bz‖2 has bounded level sets, then (zk)k≥0 is bounded
and any of its cluster points z∗ provides with (x∗, z∗) an optimal solution of (1).

It is the aim of this paper to propose a proximal variant of this algorithm, called
Proximal AMA, which overcomes its drawbacks, and to investigate its convergence
properties.

In the remainder of this section, we will introduce some notations, definitions and
basic properties that will be used in the sequel (see [11]). LetH and G be real Hilbert
spaces with corresponding inner products 〈·, ·〉 and associated norms ‖·‖ = √〈·, ·〉. In
both spaces, we denote by⇀ the weak convergence and by→ the strong convergence.

We say that a function f : H → R is proper, if its domain satisfies the assumption
dom f := {x ∈ H : f (x) < +∞} 
= ∅ and f (x) > −∞ for all x ∈ H. Let be
�(H) = { f : H → R : f is proper, convex and lower semicontinuous}.

The (Fenchel) conjugate function f ∗ : H → R of a function f ∈ �(H) is defined
as

f ∗(p) = supx∈H{〈p, x〉 − f (x)} ∀p ∈ H

and is a proper, convex and lower semicontinuous function. It also holds f ∗∗ = f ,
where f ∗∗ is the conjugate function of f ∗. The convex subdifferential of f is defined
as ∂ f (x) = {u ∈ H : f (y) ≥ f (x) + 〈u, y − x〉∀y ∈ H}, if f (x) ∈ R, and as
∂ f (x) = ∅, otherwise.

The infimal convolution of two proper functions f , g : H → R is the function
f �g : H → R, defined by ( f �g)(x) = inf y∈H{ f (y) + g(x − y)}.
The proximal point operator of parameter γ of f at x , where γ > 0, is defined as

Proxγ f : H → H, Proxγ f (x) = argminy∈H
{
γ f (y) + 1

2
‖y − x‖2

}
.

According to Moreau’s decomposition formula, we have

Proxγ f (x) + γ Prox(1/γ ) f ∗(γ −1x) = x, ∀x ∈ H.

Let C ⊆ H be a convex and closed set. The strong quasi-relative interior of C is

sqri(C) = {x ∈ C : ∪λ>0λ(C − x) is a closed linear subspace of H} .

We always have int(C) ⊆ sqri(C), and if H is finite dimensional, then sqri(C) =
ri(C), where ri(C) denotes the interior of C relative to its affine hull.

We denote by S+(H) the set of operators fromH toHwhich are linear, continuous,
self-adjoint and positive semidefinite. For M ∈ S+(H), we define the seminorm
‖ · ‖M : H → [0,+∞), ‖x‖M = √〈x, Mx〉. We consider the Loewner partial
ordering on S+(H), defined for M1, M2 ∈ S+(H) by

M1 � M2 ⇔ ‖x‖M1 ≥ ‖x‖M2 ∀x ∈ H.
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Furthermore, we define for α > 0 the setPα(H) := {M ∈ S+(H) : M � αId}, where
Id : H → H, Id(x) = x for all x ∈ H, denotes the identity operator onH.

Let A : H → G be a linear continuous operator. The operator A∗ : G → H,
fulfilling 〈A∗y, x〉 = 〈y, Ax〉 for all x ∈ H and y ∈ G, denotes the adjoint operator
of A, while ‖A‖ := sup{‖Ax‖ : ‖x‖ ≤ 1} denotes the norm of A.

3 The Proximal AlternatingMinimization Algorithm

The two-block separable optimization problem we are going to investigate in this
paper has the following formulation.

Problem 3.1 Let H, G and K be real Hilbert spaces, f ∈ �(H) γ -strongly convex
with γ > 0, g ∈ �(G), h1 : H → R a convex and Fréchet differentiable function with
L1-Lipschitz continuous gradient with L1 ≥ 0, h2 : G → R a convex and Fréchet
differentiable functions with L2-Lipschitz continuous gradient with L2 ≥ 0, A : H →
K and B : G → K linear continuous operators such that A 
= 0 and b ∈ K. Consider
the following optimization problem with two-block separable objective function and
linear constraints

min
x∈H,z∈G

f (x) + h1(x) + g(z) + h2(z) s.t. Ax + Bz = b. (5)

We allow the Lipschitz constant of the gradients of the functions h1 and h2 to be zero.
In this case, the functions are affine.

The Lagrangian associated with the optimization problem (5) is defined by L :
H × G × K → R,

L(x, z, p) = f (x) + h1(x) + g(z) + h2(z) + 〈p, b − Ax − Bz〉.

We say that (x∗, z∗, p∗) ∈ H × G × K is a saddle point of the Lagrangian L , if

(x∗, z∗, p) ≤ L(x∗, z∗, p∗) ≤ L(x, z, p∗) ∀(x, z, p) ∈ H × G × K.

It is well known that (x∗, z∗, p∗) is a saddle point of the Lagrangian L if and only
if (x∗, z∗) is an optimal solution of (5), p∗ is an optimal solution of its Fenchel dual
problem

sup
λ∈K

{−( f ∗�h∗
1)(A

∗λ) − (g∗�h∗
2)(B

∗λ) + 〈λ, b〉}, (6)

and the optimal objective values of (5) and (6) coincide. The existence of saddle
points for L is guaranteed when (5) has an optimal solution and, for instance, the
Attouch–Brézis-type condition

b ∈ sqri(A(dom f ) + B(dom g)) (7)
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holds (see [12, Theorem 3.4]). In the finite-dimensional setting, this asks for the
existence of x ∈ ri(dom f ) and z ∈ ri(dom g) satisfying Ax + Bz = b and coincides
with the assumption used by Tseng [1].

The system of optimality conditions for the primal-dual pair of optimization prob-
lems (5)–(6) reads:

A∗ p∗ − ∇h1(x
∗) ∈ ∂ f (x∗), B∗ p∗ − ∇h2(z

∗) ∈ ∂g(z∗) and Ax∗ + Bz∗ = b. (8)

This means that if (5) has an optimal solution (x∗, z∗) and a qualification condition,
like for instance (7), is fulfilled, then there exists an optimal solution p∗ of (6) such that
(8) holds; consequently, (x∗, z∗, p∗) is a saddle point of the Lagrangian L . Conversely,
if (x∗, z∗, p∗) is a saddle point of the Lagrangian L , thus, (x∗, z∗, p∗) satisfies relation
(8), then (x∗, z∗) is an optimal solution of (5) and p∗ is an optimal solution of (6).

Remark 3.1 If (x∗
1 , z

∗
1, p

∗
1) and (x∗

2 , z
∗
2, p

∗
2) are two saddle points of the Lagrangian

L , then x∗
1 = x∗

2 . This follows easily from (8), by using the strong monotonicity of
∂ f and the monotonicity of ∂g.

In the following, we formulate the Proximal Alternating Minimization Algorithm
to solve (5). To this end, we modify Tseng’s AMA by evaluating in each of the
two subproblems the functions h1 and h2 via gradient steps, respectively, and by
introducing proximal terms defined through two sequences of positively semidefinite
operators (Mk

1 )k≥0 and (Mk
2 )k≥0.

Algorithm 3.1 (Proximal AMA) Let (Mk
1 )k≥0 ⊆ S+(H) and (Mk

2 )k≥0 ⊆ S+(G).
Choose (x0, z0, p0)∈ H × G × K and a sequence of stepsizes (ck)k≥0 ⊆ (0,+∞).
For all k ≥ 0, set:

xk+1 = argminx∈H
{
f (x) − 〈pk, Ax〉 + 〈x − xk,∇h1(x

k)〉 + 1

2
‖x − xk‖2

Mk
1

}

(9)

zk+1 ∈ argminz∈G
{
g(z) − 〈pk, Bz〉

+ ck
2

‖Axk+1 + Bz − b‖2 + 〈z − zk,∇h2(z
k)〉 + 1

2
‖z − zk‖2

Mk
2

}
(10)

pk+1 = pk + ck(b − Axk+1 − Bzk+1). (11)

Remark 3.2 The sequence (zk)k≥0 is uniquely determined if there exists αk > 0 such
that ck B∗B + Mk

2 ∈ Pαk (G) for all k ≥ 0. This actually ensures that the objective
function in subproblem (10) is strongly convex.

Remark 3.3 Let k ≥ 0 be fixed and Mk
2 := 1

σk
Id − ck B∗B, where σk > 0 and

σkck‖B‖2 ≤ 1. Then Mk
2 is positively semidefinite, and the update of zk+1 in the

Proximal AMA method becomes a proximal step. This idea has been used in the
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past with the same purpose for different algorithms involving proximal steps; see, for
instance, [7–9,13–16]. Indeed, (10) holds if and only if

0 ∈ ∂g(zk+1) + (ck B
∗B + Mk

2 )zk+1 + ck B
∗(Axk+1 − b)

− Mk
2 z

k + ∇h2(z
k) − B∗ pk

or, equivalently,

0 ∈ ∂g(zk+1) + 1

σk
zk+1 −

(
1

σk
Id−ck B

∗B
)
zk

+∇h2(z
k) + ck B

∗(Axk+1 − b) − B∗ pk .

But this is nothing else than

zk+1 = argminz∈G
{
g(z) + 1

2σk

∥∥∥z −
(
zk − σk∇h2(z

k)

+σkck B
∗(b − Axk+1 − Bzk) + σk B

∗ pk
)∥∥∥

2
}

= Proxσk g

(
zk − σk∇h2(z

k) + σkck B
∗(b − Axk+1 − Bzk) + σk B

∗ pk
)

.

The convergence of the Proximal AMA method is addressed in the next theorem.

Theorem 3.1 In the setting of Problem 3.1, let the set of the saddle points of the
Lagrangian L be nonempty. We assume that Mk

1 − L1
2 Id ∈ S+(H), Mk

1 � Mk+1
1 ,

Mk
2 − L2

2 Id ∈ S+(G), Mk
2 � Mk+1

2 for all k ≥ 0 and that (ck)k≥0 is a monotonically
decreasing sequence satisfying

ε ≤ ck ≤ 2γ

‖A‖2 − ε ∀k ≥ 0, (12)

where 0 < ε <
γ

‖A‖2 . If one of the following assumptions:

(i) there exists α > 0 such that Mk
2 − L2

2 Id ∈ Pα(G) for all k ≥ 0;
(ii) there exists β > 0 such that B∗B ∈ Pβ(G);

holds true, then the sequence (xk, zk, pk)k≥0 generated by Algorithm 3.1 converges
weakly to a saddle point of the Lagrangian L.

Proof Let (x∗, z∗, p∗) be a fixed saddle point of the Lagrangian L . This means that it
fulfils the system of optimality conditions

A∗ p∗ − ∇h1(x
∗) ∈ ∂ f (x∗) (13)

B∗ p∗ − ∇h2(z
∗) ∈ ∂g(z∗) (14)

Ax∗ + Bz∗ = b (15)
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We start by proving that

∑
k≥0

‖xk+1 − x∗‖2 < +∞,
∑
k≥0

‖Bzk+1 − Bz∗‖2 < +∞,
∑
k≥0

‖zk+1 − zk‖2
Mk

2− L2
2 Id

< +∞

and that the sequences (zk)k≥0 and (pk)k≥0 are bounded.
Assume that L1 > 0 and L2 > 0. Let k ≥ 0 be fixed. Writing the optimality

conditions for subproblems (9) and (10), we obtain

A∗ pk − ∇h1(x
k) + Mk

1 (xk − xk+1) ∈ ∂ f (xk+1) (16)

and

B∗ pk − ∇h2(z
k) + ck B

∗(−Axk+1 − Bzk+1 + b) + Mk
2 (zk − zk+1) ∈ ∂g(zk+1),

(17)

respectively. Combining (13)–(17) with the strong monotonicity of ∂ f and the mono-
tonicity of ∂g, it yields

〈A∗(pk − p∗) − ∇h1(x
k) + ∇h1(x

∗)
+ Mk

1 (xk − xk+1), xk+1 − x∗〉 ≥ γ ‖xk+1 − x∗‖2

and

〈B∗(pk − p∗) − ∇h2(z
k) + ∇h2(z

∗) + ck B
∗(−Axk+1 − Bzk+1 + b)

+ Mk
2 (zk − zk+1), zk+1 − z∗〉 ≥ 0,

which after summation lead to

〈pk − p∗, Axk+1 − Ax∗〉 + 〈pk − p∗, Bzk+1 − Bz∗〉
+ 〈ck(−Axk+1 − Bzk+1 + b), Bzk+1 − Bz∗〉
− 〈∇h1(x

k) − ∇h1(x
∗), xk+1 − x∗〉 − 〈∇h2(z

k) − ∇h2(z
∗), zk+1 − z∗〉

+ 〈Mk
1 (xk − xk+1), xk+1 − x∗〉 + 〈Mk

2 (zk − zk+1), zk+1 − z∗〉
≥ γ ‖xk+1 − x∗‖2. (18)

According to the Baillon–Haddad theorem (see [11, Corollary 18.16]), the gradients
of h1 and h2 are 1

L1
and 1

L2
-cocoercive, respectively; thus,

〈∇h1(x
∗) − ∇h1(x

k), x∗ − xk〉 ≥ 1

L1
‖∇h1(x

∗) − ∇h1(x
k)‖2

〈∇h2(z
∗) − ∇h2(z

k), z∗ − zk〉 ≥ 1

L2
‖∇h2(z

∗) − ∇h2(z
k)‖2.
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On the other hand, by taking into account (11) and (15), it holds

〈pk − p∗, Axk+1 − Ax∗〉 + 〈pk − p∗, Bzk+1 − Bz∗〉
= 〈pk − p∗, Axk+1 + Bzk+1 − b〉 = 1

ck
〈pk − p∗, pk − pk+1〉

By employing the last three relations in (18), it yields

1

ck
〈pk − p∗, pk − pk+1〉 + ck〈−Axk+1 − Bzk+1 + b, Bzk+1 − Bz∗〉
+ 〈Mk

1 (xk − xk+1), xk+1 − x∗〉 + 〈Mk
2 (zk − zk+1), zk+1 − z∗〉

+ 〈∇h1(x
∗) − ∇h1(x

k), xk+1 − x∗〉 + 〈∇h1(x
∗) − ∇h1(x

k), x∗ − xk〉
− 1

L1
‖∇h1(x

∗) − ∇h1(x
k)‖2 + 〈∇h2(z

∗) − ∇h2(z
k), zk+1 − z∗〉

+ 〈∇h2(z
∗) − ∇h2(z

k), z∗ − zk〉 − 1

L2
‖∇h2(z

∗) − ∇h2(z
k)‖2

≥ γ ‖xk+1 − x∗‖2,

which, after expressing the inner products by means of norms, becomes

1

2ck

(
‖pk − p∗‖2 + ‖pk − pk+1‖2 − ‖pk+1 − p∗‖2

)

+ ck
2

(
‖Ax∗ − Axk+1‖2 − ‖b − Axk+1 − Bzk+1‖2 − ‖Ax∗ + Bzk+1 − b‖2

)

+ 1

2

(
‖xk − x∗‖2

Mk
1

− ‖xk − xk+1‖2
Mk

1
− ‖xk+1 − x∗‖2

Mk
1

)

+ 1

2

(
‖zk − z∗‖2

Mk
2

− ‖zk − zk+1‖2
Mk

2
− ‖zk+1 − z∗‖2

Mk
2

)

+ 〈∇h1(x
∗) − ∇h1(x

k), xk+1 − xk〉 − 1

L1
‖∇h1(x

∗) − ∇h1(x
k)‖2

+ 〈∇h2(z
∗) − ∇h2(z

k), zk+1 − zk〉 − 1

L2
‖∇h2(z

∗) − ∇h2(z
k)‖2

≥ γ ‖xk+1 − x∗‖2.

Using again (11), inequality ‖Ax∗−Axk+1‖2 ≤ ‖A‖2‖x∗−xk+1‖2 and the following
expressions

〈∇h1(x
∗) − ∇h1(x

k), xk+1 − xk〉 − 1

L1
‖∇h1(x

∗) − ∇h1(x
k)‖2

= −L1

∥∥∥∥
1

L1
(∇h1(x

∗) − ∇h1(x
k)) + 1

2
(xk − xk+1)

∥∥∥∥
2

+ L1

4
‖xk − xk+1‖2,
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and

〈∇h2(x
∗) − ∇h2(z

k), zk+1 − zk〉 − 1

L2
‖∇h2(z

∗) − ∇h2(z
k)‖2

= −L2

∥∥∥∥
1

L2
(∇h2(z

∗) − ∇h2(z
k)) + 1

2
(zk − zk+1)

∥∥∥∥
2

+ L2

4
‖zk − zk+1‖2,

it yields

1

2
‖xk+1 − x∗‖2

Mk
1

+ 1

2ck
‖pk+1 − p∗‖2 + 1

2
‖zk+1 − z∗‖2

Mk
2

≤ 1

2
‖xk − x∗‖2

Mk
1

+ 1

2ck
‖pk − p∗‖2 + 1

2
‖zk − z∗‖2

Mk
2

− ck
2

‖Ax∗ + Bzk+1 − b‖2

− 1

2
‖zk − zk+1‖2

Mk
2

−
(
γ − ck

2
‖A‖2

)
‖xk+1 − x∗‖2 − 1

2
‖xk − xk+1‖2

Mk
1

− L1

∥∥∥∥
1

L1
(∇h1(x

∗) − ∇h1(x
k)) + 1

2
(xk − xk+1)

∥∥∥∥
2

+ L1

4
‖xk − xk+1‖2

− L2

∥∥∥∥
1

L2
(∇h2(z

∗) − ∇h2(z
k)) + 1

2
(zk − zk+1)

∥∥∥∥
2

+ L2

4
‖zk − zk+1‖2.

Finally, by using the monotonicity of (Mk
1 )k≥0, (Mk

2 )k≥0 and (ck)k≥0, we obtain

ck+1‖xk+1 − x∗‖2
Mk+1

1
+ ‖pk+1 − p∗‖2 + ck+1‖zk+1 − z∗‖2

Mk+1
2

≤ ck‖xk − x∗‖2
Mk

1
+ ‖pk − p∗‖2 + ck‖zk − z∗‖2

Mk
2

− Rk, (19)

where

Rk := ck
(
2γ − ck‖A‖2

)
‖xk+1 − x∗‖2 + c2k‖Bzk+1 − Bz∗‖2

+ ck‖zk − zk+1‖2
Mk

2− L2
2 Id

+ ck‖xk − xk+1‖2
Mk

1− L1
2 Id

+ 2ck L1

∥∥∥∥
1

L1
(∇h1(x

∗) − ∇h1(x
k)) + 1

2
(xk − xk+1)

∥∥∥∥
2

+ 2ck L2

∥∥∥∥
1

L2
(∇h2(z

∗) − ∇h2(z
k)) + 1

2
(zk − zk+1)

∥∥∥∥
2

.

If L1 = 0 (and, consequently, ∇h1 is constant) and L2 > 0, then, by using the same
arguments, we obtain again (19), but with

Rk := ck
(
2γ − ck‖A‖2

)
‖xk+1 − x∗‖2 + c2k‖Bzk+1 − Bz∗‖2

+ ck‖zk − zk+1‖2
Mk

2− L2
2 Id

+ ck‖xk − xk+1‖2
Mk

1

+ 2ck L2

∥∥∥∥
1

L2
(∇h2(z

∗) − ∇h2(z
k)) + 1

2
(zk − zk+1)

∥∥∥∥
2

.
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If L2 = 0 (and, consequently, ∇h2 is constant) and L2 > 0, then, by using the same
arguments, we obtain again (19), but with

Rk := ck
(
2γ − ck‖A‖2

)
‖xk+1 − x∗‖2 + c2k‖Bzk+1 − Bz∗‖2

+ ck‖zk − zk+1‖2
Mk

2
+ ck‖xk − xk+1‖2

Mk
1− L1

2 Id

+ 2ck L1

∥∥∥∥
1

L1
(∇h1(x

∗) − ∇h1(x
k)) + 1

2
(xk − xk+1)

∥∥∥∥
2

.

Relation (19) follows even if L1 = L2 = 0, but with

Rk := ck
(
2γ − ck‖A‖2

)
‖xk+1 − x∗‖2 + c2k‖Bzk+1 − Bz∗‖2

+ ck‖zk − zk+1‖2
Mk

2
+ ck‖xk − xk+1‖2

Mk
1
.

Notice that, due to Mk
1 − L1

2 Id ∈ S+(H) and Mk
2 − L2

2 Id ∈ S+(G), all summands in
Rk are nonnegative.

Let be N ≥ 0 fixed. By summing the inequality in (19) for k = 0, . . . , N and using
telescoping arguments, we obtain

cN+1‖xN+1 − x∗‖2
MN+1

1
+ ‖pN+1 − p∗‖2 + cN‖zN+1 − z∗‖2

MN+1
2

≤ c0‖x0 − x∗‖2
M0

1
+ ‖p0 − p∗‖2 + c0‖z0 − z∗‖M0

2
−

N∑
k=0

Rk .

On the other hand, from (19) we also obtain that

∃ lim
k→∞

(
ck‖xk − x∗‖2

Mk
1

+ ‖pk − p∗‖2 + ck‖zk − z∗‖2
Mk

2

)
, (20)

thus (pk)k≥0 is bounded, and
∑

k≥0 Rk < +∞.
Taking (12) into account, we have ck(2γ − ck‖A‖2) ≥ ε2‖A‖2 for all k ≥ 0.

Therefore,

∑
k≥0

‖xk+1 − x∗‖2 < +∞,
∑
k≥0

‖Bzk+1 − Bz∗‖2 < +∞ (21)

and

∑
k≥0

‖zk+1 − zk‖2
Mk

2− L2
2 Id

< +∞. (22)

From here, we obtain

xk → x∗, Bzk → Bz∗ (k → +∞), (23)
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which, by using (11) and (15), lead to

pk − pk+1 → 0 (k → +∞). (24)

Taking into account the monotonicity properties of (ck)k≥0 and (Mk
1 )k≥0, a direct

implication of (20) and (23) is

∃ lim
k→∞

(
‖pk − p∗‖2 + ck‖zk − z∗‖2

Mk
2

)
. (25)

Suppose that assumption (i) holds true, namely that there exists α > 0 such that
Mk

2 − L2
2 Id ∈ Pα(G) for all k ≥ 0. From (25), it follows that (zk)k≥0 is bounded,

while (22) ensures that

zk+1 − zk → 0 (k → +∞). (26)

In the following, let us prove that each weak sequential cluster point of
(xk, zk, pk)k≥0 (notice that the sequence is bounded) is a saddle point of L . Let be
(z̄, p̄) ∈ G × K such that the subsequence (xk j , zk j , pk j ) j≥0 converges weakly to
(x∗, z̄, p̄) as j → +∞. From (16), we have

A∗ pk j − ∇h1(x
k j ) + M

k j
1 (xk j − xk j+1) ∈ ∂ f (xk j+1) ∀ j ≥ 1.

Due to the fact that xk j converges strongly to x∗ and pk j converges weakly to a p̄ as
j → +∞, using the continuity of∇h1 and the fact that the graph of the convex subdif-
ferential of f is sequentially closed in the strong-weak topology (see [11, Proposition
20.33]), it follows

A∗ p̄ − ∇h1(x
∗) ∈ ∂ f (x∗).

From (17), we have for all j ≥ 0

B∗ pk j − ∇h2(z
k j ) + ck j B

∗(−Axk j+1 − Bzk j+1 + b)

+ M
k j
2 (zk j − zk j+1) ∈ ∂g(zk j+1),

which is equivalent to

B∗ pk j + ∇h2(z
k j+1) − ∇h2(z

k j ) + ck j B
∗(−Axk j+1 − Bzk j+1 + b)

+ M
k j
2 (zk j − zk j+1) ∈ ∂(g + h2)(z

k j+1)

and further to

zk j+1 ∈ ∂(g + h2)
∗(B∗ pk j + ∇h2(z

k j+1) − ∇h2(z
k j )

+ ck j B
∗(−Axk j+1 − Bzk j+1 + b) + M

k j
2 (zk j − zk j+1)

)
. (27)

123



Journal of Optimization Theory and Applications

By denoting for all j ≥ 0

v j := zk j+1, u j := pk j ,

w j := ∇h2(z
k j+1) − ∇h2(z

k j )

+ ck j B
∗(−Axk j+1 − Bzk j+1 + b) + M

k j
2 (zk j − zk j+1),

(27) reads

v j ∈ ∂(g + h2)
∗(B∗u j + w j ) ∀ j ≥ 0.

According to (26), we have v j⇀z̄, u j⇀ p̄ as j → +∞; thus, by taking into account
(23), Bv j → Bz̄ = Bz∗ as j → +∞. Combining (29) with the Lipschitz continuity
of ∇h2, (24), (26) and (11), one can easily see that w j → 0 as j → +∞. Due to
the monotonicity of the subdifferential, we have that for all (u, v) in the graph of
∂(g + h2)∗ and for all j ≥ 0

〈Bv j − Bv, u j 〉 + 〈v j − v,w j − u〉 ≥ 0.

We let j converge to +∞ and receive

〈z̄ − v, B∗ p̄ − u〉 ≥ 0 ∀(u, v) in the graph of ∂(g + h2)
∗.

The maximal monotonicity of the convex subdifferential of (g + h2)∗ ensures that
z̄ ∈ ∂(g + h2)∗(B∗ p̄), which is the same as B∗ p̄ ∈ ∂(g + h2)(z̄). In other words,
B∗ p̄−∇h2(z̄) ∈ ∂g(z̄). Finally, by combining (11) and (24), the equality Ax∗+Bz̄ =
b follows. In conclusion, (x∗, z, p̄) is a saddle point of the Lagrangian L .

In the following, we show that sequence (xk, zk, pk)k≥0 converges weakly. To this
end, we consider two sequential cluster points (x∗, z1, p1) and (x∗, z2, p2). Conse-
quently, there exists (ks)s≥0, ks → +∞ as s → +∞, such that the subsequence
(xks , zks , pks )s≥0 converges weakly to (x∗, z1, p1) as s → +∞. Furthermore, there
exists (kt )t≥0, kt → +∞ as t → +∞, such that that a subsequence (xkt , zkt , pkt )t≥0
converges weakly to (x∗, z2, p2) as t → +∞. As seen before, (x∗, z1, p1) and
(x∗, z2, p2) are both saddle points of the Lagrangian L .

From (25), which is fulfilled for every saddle point of the Lagrangian L , we obtain

∃ lim
k→+∞(‖pk− p1‖2 − ‖pk − p2‖2+ck‖zk − z1‖2Mk

2
−ck‖zk−z2‖2Mk

2
) :=T . (28)

For all k ≥ 0, we have

‖pk − p1‖2 − ‖pk − p2‖2 + ck‖zk − z1‖2Mk
2

− ck‖zk − z2‖2Mk
2

= ‖p2 − p1‖2 + 2〈pk − p2, p2 − p1〉 + ck‖z2 − z1‖2Mk
2

+ 2ck〈zk − z2, z2 − z1〉Mk
2
.
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Since Mk
2 ≥

(
α + L2

2

)
Id for all k ≥ 0 and (Mk

2 )k≥0 is a nonincreasing sequence

of symmetric operators in the sense of the Loewner partial ordering, there exists a

symmetric operator M ≥
(
α + L2

2

)
Id such that (Mk

2 )k≥0 converges pointwise to

M in the strong topology as k → +∞ (see [17, Lemma 2.3]). Furthermore, let
c := limk→+∞ ck > 0. Taking the limits in (28) along the subsequences (ks)s≥0 and
(kt )t≥0, it yields

T = −‖p2 − p1‖2 − c‖z2 − z1‖2M = ‖p2 − p1‖2 + c‖z2 − z1‖2M ,

thus

‖p2 − p1‖2 + c‖z2 − z1‖2M = 0.

It follows that p1 = p2 and z1 = z2; thus, (xk, zk, pk)k≥0 converges weakly to a
saddle point of the Lagrangian L .

Assume now that condition (ii) holds, namely that there exists β > 0 such that
B∗B ∈ Pβ(H). Then β‖z1 − z2‖2 ≤ ‖Bz1 − Bz2‖2 for all z1, z2 ∈ G, which means
that, if (x∗

1 , z
∗
1, p

∗
1) and (x∗

2 , z
∗
2, p

∗
2) are two saddle points of the Lagrangian L , then

x∗
1 = x∗

2 and z∗1 = z∗2.
For the saddle point (x∗, z∗, p∗) of the Lagrangian L , we fixed at the beginning of

the proof and the generated sequence (xk, zk, pk)k≥0 we receive because of (23) that

xk → x∗, zk → z∗, pk − pk+1 → 0 (k → +∞). (29)

Moreover,

∃ lim
k→∞ ‖pk − p∗‖2.

The remainder of the proof follows in analogy to the one given under assumption (i).
��

If h1 = 0 and h2 = 0, and Mk
1 = 0 and Mk

2 = 0 for all k ≥ 0, then the
Proximal AMA method becomes the AMA method as it has been proposed by Tseng
[1]. According to Theorem 3.1 (for L1 = L2 = 0), the generated sequence converges
weakly to a saddle point of the Lagrangian, if there exists β > 0 such that B∗B ∈
Pβ(G). In finite-dimensional spaces, this condition reduces to the assumption that B
is injective.

4 Numerical Experiments

In this section, we compare the numerical performances of AMA and Proximal AMA
on two applications in image processing and machine learning. The numerical exper-
iments were performed on a computer with an Intel Core i5-3470 CPU and 8 GB
DDR3 RAM.
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4.1 Image Denoising and Deblurring

We addressed an image denoising and deblurring problem formulated as a nonsmooth
convex optimization problem (see [18–20])

inf
x∈Rn

{
1

2
‖Ax − b‖2 + λTV(x)

}
, (30)

where A ∈ R
n×n represents a blur operator, b ∈ R

n is a given blurred and noisy image,
λ > 0 is a regularization parameter and TV : Rn → R is a discrete total variation
functional. The vector x ∈ R

n is the vectorized image X ∈ R
M×N , where n = MN

and xi, j := Xi, j stand for the normalized value of the pixel in the i-th row and the
j-th column, for 1 ≤ i ≤ M, 1 ≤ j ≤ N .
Two choices have been considered for the discrete total variation, namely the

isotropic total variation TViso : Rn → R,

TViso(x) =
M−1∑
i=1

N−1∑
j=1

√
(xi+1, j − xi, j )2 + (xi, j+1 − xi, j )2

+
M−1∑
i=1

|xi+1,N − xi, j | +
N−1∑
j=1

|xM, j+1 − xM, j |,

and the anisotropic total variation TVaniso : Rn → R,

TVaniso(x) =
M−1∑
i=1

N−1∑
j=1

|xi+1, j − xi, j | + |xi, j+1 − xi, j |

+
M−1∑
i=1

|xi+1,N − xi, j | +
N−1∑
j=1

|xM, j+1 − xM, j |.

Consider the linear operator L : Rn → R
n × R

n, xi, j �→ (
L1xi, j , L2xi, j

)
, where

L1xi, j =
{
xi+1, j − xi, j , if i < M

0, if i = M
and L2xi, j =

{
xi, j+1 − xi, j , if j < N

0, if j = N

One can easily see that ‖L‖2 ≤ 8. The optimization problem (30) can be written as

inf
x∈Rn

{ f (Ax) + g(Lx)} , (31)

where f : R
n → R, f (x) = 1

2‖x − b‖2, and g : R
n × R

n → R is defined
by g(y, z) = λ‖(y, z)‖1 for the anisotropic total variation, and by g(y, z) =
λ‖(y, z)‖× := λ

∑M
i=1

∑N
j=1

√
y2i, j + z2i, j for the isotropic total variation.
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We solved the Fenchel dual problem of (31) by AMA and Proximal AMA and
determined in this way an optimal solution of the primal problem, too. The reason
for this strategy was that the Fenchel dual problem of (31) is a convex optimization
problem with two-block separable linear constraints and objective function.

Indeed, the Fenchel dual problem of (31) reads (see [11,12])

inf
p∈Rn ,q∈Rn×Rn

{
f ∗(p) + g∗(q)

}
, s.t. A∗ p + L∗q = 0. (32)

Since f and g have full domains, strong duality for (31)–(32) holds.
As f ∗(p) = 1

2‖p‖2 + 〈p, b〉 for all p ∈ R
n , f ∗ is 1-strongly convex. We chose

Mk
1 = 0 and Mk

2 = 1
σk
I − ck L∗L (see Remark 3.3) and obtained for Proximal AMA

the iterative scheme which reads for every k ≥ 0 :

pk+1 = Axk − b

qk+1 = Proxσk g∗
(
qk + σkck L(−A∗ pk+1 − L∗qk) + σk L(xk)

)

xk+1 = xk + ck(−A∗ pk+1 − L∗qk+1).

In the case of the anisotropic total variation, the conjugate of g is the indicator
function of the set [−λ, λ]n × [−λ, λ]n ; thus, Proxσk g∗ is the projection operator
P[−λ,λ]n×[−λ,λ]n on the set [−λ, λ]n × [−λ, λ]n . The iterative scheme reads for all
k ≥ 0:

pk+1 = Axk − b

(qk+1
1 , qk+1

2 ) = P[−λ,λ]n×[−λ,λ]n
(
(qk1 , q

k
2 )

+ ckσk(−L A∗ pk+1 − LL∗(qk1 , qk2 )) + σk Lx
k
)

xk+1 = xk + ck
(
−A∗ pk+1 − L∗(qk+1

1 , qk+1
2 )

)
.

In the case of the isotropic total variation, the conjugate of g is the indicator function

of the set S :=
{
(v,w) ∈ R

n × R
n : max1≤i≤n

√
v2i + w2

i ≤ λ

}
; thus, Proxσk g∗ is the

projection operator PS : Rn × R
n → S on S, defined as

(vi , wi ) �→ λ
(vi , wi )

max

{
λ,

√
v2i + w2

i

} , i = 1, . . . , n.

The iterative scheme reads for all k ≥ 0:

pk+1 = Axk − b

(qk+1
1 , qk+1

2 ) = PS
(
(qk1 , q

k
2 ) + ckσk(−L A∗ pk+1 − LL∗(qk1 , qk2 )) + σk Lx

k
)
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xk+1 = xk + ck
(
−A∗ pk+1 − L∗(qk+1

1 , qk+1
2 )

)
.

We compared the Proximal AMA method with Tseng’s AMA method. While in
Proximal AMA a closed formula is available for the computation of (qk+1

1 , qk+1
2 )k≥0,

in AMA we solved the resulting optimization subproblem

(qk+1
1 , qk+1

2 ) = argminq1,q2

{
g∗(q1, q2) − 〈xk+1, L∗(q1, q2) 〉

+ 1

2
ck‖A∗ pk+1 + L∗(q1, q2)‖2

}

in every iteration k ≥ 0 by making some steps of the FISTA method [2].
We used in our experiments a Gaussian blur of size 9 × 9 and standard deviation

4, which led to an operator A with ‖A‖2 = 1 and A∗ = A. Furthermore, we added
Gaussian white noise with standard deviation 10−3. We used for both algorithms a
constant sequence of stepsizes ck = 2−10−7 for all k ≥ 0. One can notice that (ck)k≥0
fulfils (12). For Proximal AMA, we considered σk = 1

8.00001·ck for all k ≥ 0, which

ensured that every matrix Mk
2 = 1

σk
I− ck L∗L is positively definite for all k ≥ 0. This

is actually the case, if σkck‖L‖2 < 1 for all k ≥ 0. In other words, assumption (i) in
Theorem 3.1 was verified.

In Figs. 1, 2, 3 and 4, we show how Proximal AMA and AMA perform when
reconstructing the blurred and noisy coloured MATLAB test image “office_ 4” of
600 × 903 pixels (see Fig. 5) for different choices for the regularization parameter λ

and by considering both the anisotropic and isotropic total variation as regularization
functionals. In all considered instances that Proximal AMA outperformed AMA from
the point of view of both the convergence behaviour of the sequence of the function
values and of the sequence of ISNR (Improvement in signal-to-noise ratio) values. An
explanation could be that the number of iterations Proximal AMA makes in a certain
amount of time ismore than double the number of outer iterations performed byAMA.

4.2 Kernel-BasedMachine Learning

In this subsection, we will describe the numerical experiments we carried out in the
context of classifying images via support vector machines.

The given data set consisting of 5570 training images and 1850 test images of
size 28 × 28 was taken from http://www.cs.nyu.edu/~roweis/data.html. The problem
we considered was to determine a decision function based on a pool of handwritten
digits showing either the number five or the number six, labelled by +1 and −1,
respectively (see Fig. 6). To evaluate the quality of the decision function, we computed
the percentage of misclassified images of the test data set.

In order to describe the approach we used, we denote by

Z = {(X1,Y1), . . . , (Xn,Yn)} ⊆ R
d × {+1,−1},
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Fig. 1 Objective function values and the ISNR values for the anisotropic TV and λ = 5 · 10−5

Fig. 2 Objective function values and the ISNR values for the anisotropic TV and λ = 10−5

Fig. 3 Objective function values and the ISNR values for the isotropic TV and λ = 5 · 10−5

Fig. 4 Objective function values and the ISNR values for the isotropic TV and λ = 10−4
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Fig. 5 Original image, the blurred and noisy image and the reconstructed image after 50 s cpu time

Fig. 6 A sample of images belonging to the classes +1 and −1, respectively

the given training data set. The decision functional f was assumed to be an element
of the Reproducing Kernel Hilbert Space (RHKS)Hκ , induced by the symmetric and
finitely positive definite Gaussian kernel function

κ : Rd × R
d → R, κ(x, y) = exp

(
−‖x − y‖2

2σ 2

)
.

By K ∈ R
n×n , we denoted the Gram matrix with respect to the training data set Z ,

namely the symmetric and positive definite matrix with entries Ki j = κ(Xi , X j ) for
i, j = 1, . . . , n. To penalize the deviation between the predicted value f(x) and the
true value y ∈ {+1,−1}, we used the hinge loss functional (x, y) �→ max{1− xy, 0}.

According to the representer theorem, the decision function f can be expressed as a
kernel expansion in terms of the training data; in other words,f(·) = ∑n

i=1 xiκ(·, Xi ),
where x = (x1, . . . , xn) ∈ R

n is the optimal solution of the optimization problem

min
x∈Rn

{
1

2
xT K x + C

n∑
i=1

max{1 − (Kx)i Yi , 0}
}

. (33)

Here, C > 0 denotes the regularization parameter controlling the trade-off between
the loss function and the regularization term. Hence, in order to determine the decision
function we solved the convex optimization problem (33), which can be written as

min
x∈Rn

{ f (x) + g(Kx)}

or, equivalently,

min
x∈Rn ,z∈Rn

{ f (x) + g(z)} , s.t. Kx − z = 0
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where f : R
n → R, f (x) = 1

2 x
T K x , and g : R

n → R is defined by g(z) =
C

∑n
i=1 max{1 − ziYi , 0}.

Since the Gram matrix K is positively definite, the function f is λmin(K )-strongly
convex, where λmin(K ) denotes the minimal eigenvalue of K , and differentiable, and
it holds ∇ f (x) = Kx for all x ∈ R

n . For an element of the form p = (p1, . . . , pn) ∈
R
n , it holds

g∗(p) =
{∑n

i=1 piYi , if piYi ∈ [−C, 0], i = 1, . . . , n,

+∞, otherwise.

Consequently, for every μ > 0 and p = (p1, . . . , pn) ∈ R
n , it holds

Proxμg∗(x) = (PY1[−C,0](p1 − σY1), . . . ,PYn [−C,0](pn − σYn)
)
,

where PYi [−C,0] denotes the projection operator on the set Yi [−C, 0], i = 1, . . . , n.
We implemented Proximal AMA for Mk

2 = 0 for all k ≥ 0 and different choices
for the sequence (Mk

1 )k≥0. This resulted in an iterative scheme which reads for all
k ≥ 0:

xk+1 = argminx∈Rn

{
f (x) − 〈pk , Kx〉 + 1

2
‖x − xk‖2

Mk
1

}
= (K + Mk

1 )−1(Kpk + Mk
1 x

k)

(34)

zk+1 = Prox 1
ck
g

(
Kxk+1 − 1

ck
pk

)
=

(
Kxk+1 − 1

ck
pk

)
− 1

ck
Proxckg∗

(
ck K xk+1 − pk

)

pk+1 = pk + ck(−Kxk+1 + zk+1). (35)

We would like to emphasize that the AMA method updates the sequence (zk+1)k≥0
also via (35), while the sequence (xk+1)k≥0, as Mk

1 = 0, is updated via xk+1 = pk

for all k ≥ 0. However, it turned out that the Proximal AMA where Mk
1 = τk K ,

for τk > 0 and all k ≥ 0, performs better than the version with Mk
1 = 0 for all

k ≥ 0, which actually corresponds to the AMA method. In this case, (34) becomes
xk+1 = 1

1+τk
(pk + τk xk) for all k ≥ 0.

We used for both algorithms a constant sequence of stepsizes given by ck = 2 ·
λmin(K )

‖K‖2 − 10−8 for all k ≥ 0. Tables 1 and 2 show for C = 1 and different values
of the kernel parameter σ that Proximal AMA outperforms AMA in what concerns
the time and the number of iterates needed to achieve a certain value for a given fixed
misclassification rate (which proved to be the best one among several obtained by
varying C and σ ) and for the RMSE (root-mean-square deviation) for the sequence of
primal iterates.
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Table 1 Performance evaluation of Proximal AMA (with τk = 10 for all k ≥ 0) and AMA for the
classification problem with C = 1 and σ = 0.2

Algorithm Misclassification rate at 0.7027% RMSE ≤ 10−3

Proximal AMA 8.18 s (145) 23.44 s (416)

AMA 8.65 s (153) 26.64 s (474)

The entries refer to the CPU times in seconds and the number of iterations

Table 2 Performance evaluation of Proximal AMA (with τk = 102 for all k ≥ 0) and AMA for the
classification problem with C = 1 and σ = 0.25

Algorithm Misclassification rate at 0.7027% RMSE ≤ 10−3

Proximal AMA 141.78 s (2448) 629.52 s (10,940)

AMA 147.99 s (2574) 652.61 s (11,368)

The entries refer to the CPU times in seconds and the number of iterations

5 Perspectives and Open Problems

In future, it might be interesting to:

(1) carry out investigations related to the convergence rates for both the iterates and
objective functionvalues ofProximalAMA; as emphasized in [10] for theProximal
ADMM algorithm, the use of variable metrics can have a determinant role in this
context, as theymay lead to dynamic stepsizeswhich are favourable to an improved
convergence behaviour of the algorithm (see also [15,21]);

(2) consider a slight modification of Algorithm 3.1, by replacing (11) with

pk+1 = pk + θck(b − Axk+1 − Bzk+1),

where 0 < θ <
√
5+1
2 and to investigate the convergence properties of the resulting

scheme; it has been noticed in [22] that the numerical performances of the classical
ADMMalgorithm for convex optimization problems in the presence of a relaxation

parameter with 1 < θ <
√
5+1
2 outperform the ones obtained when θ = 1;

(3) embed the investigations made in this paper in the more general framework of
monotone inclusion problems, as it was recently done in [10] starting from the
Proximal ADMM algorithm.

6 Conclusions

The Proximal AMAmethod has the advantage over the classical AMAmethod that, as
long as the sequence of variable metrics is chosen appropriately, it performs proximal
steps when calculating new iterates. In this way, it avoids the use in every iteration of
minimization subroutines. In addition, it handles properly smooth and convex func-
tionswhichmight appear in the objective. The sequences of generated iterates converge
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to a primal–dual solution in the same setting as for the classical AMAmethod. The fact
that instead of solving of minimization subproblems one has only to make proximal
steps, may lead to better numerical performances, as we show in the experiments on
image processing and support vector machines classification.
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9. Banert, S., Boţ, R.I., Csetnek, E.R.: Fixing and extending some recent results on the ADMMalgorithm.
Preprint arXiv:1612.05057 (2017)
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