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Abstract
We present an approach for variational regularization of inverse and imaging problems for recovering functions with values in
a set of vectors. We introduce regularization functionals, which are derivative-free double integrals of such functions. These
regularization functionals are motivated from double integrals, which approximate Sobolev semi-norms of intensity functions.
These were introduced in Bourgain et al. (Another look at Sobolev spaces. In: Menaldi, Rofman, Sulem (eds) Optimal control
and partial differential equations-innovations and applications: in honor of professor Alain Bensoussan’s 60th anniversary,
IOS Press, Amsterdam, pp 439–455, 2001). For the proposed regularization functionals, we prove existence of minimizers
as well as a stability and convergence result for functions with values in a set of vectors.

Keywords Regularization · Manifold-valued data · Non-convex · Metric · Double integral · Fractional Sobolev space ·
Bounded variation

1 Introduction

Functionswith values in a (nonlinear) subset of a vector space
appear in several applications of imaging and in inverse prob-
lems, e.g.,

• Interferometric Synthetic Aperture Radar (InSAR) is a
technique used in remote sensing and geodesy to gener-
ate, for example, digital elevation maps of the earth’s
surface. InSAR images represent phase differences of
waves between two or more SAR images, cf. [44,53].
Therefore, InSAR data are functions f : � → S

1 ⊆ R2.
The pointwise function values are on the S

1, which is
considered embedded into R2.

• A color image can be represented as a function in HSV
space (hue, saturation, value) (see, e.g., [48]). Color
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images are then described as functions f : � → K ⊆
R3. Here � is a plane in R2, the image domain, and
K (representing the HSV space) is a cone in three-
dimensional space R3.

• Estimation of the foliage angle distribution has been con-
sidered, for instance, in [39,51]. Therefore, the imaging
function is from � ⊂ R2, a part of the Earth’s surface,
into S

2 ⊆ R3, representing foliage angle orientation.
• Estimation of functions with values in SO(3) ⊆ R3×3.

Such problems appear inCryo-ElectronMicroscopy (see,
for instance, [38,58,61]).

We emphasize that we are analyzing vector-, matrix-, ten-
sor- valued functions, where pointwise function evaluations
belong to some given (sub)set, but are always elements of the
underlying vector space. This should not be confused with
set-valued functions, where every function evaluation can be
a set.

Inverse problems and imaging tasks, such as the onesmen-
tioned above, might be unstable, or even worse, the solution
could be ambiguous. Therefore, numerical algorithms for
imaging need to be regularizing to obtain approximations of
the desired solution in a stable manner. Consider the operator
equation

F(w) = v0, (1.1)
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where we assume that only (noisy) measurement data vδ

of v0 become available. In this paper the method of choice
is variational regularization which consists in calculating a
minimizer of the variational regularization functional

F(w) := D(F(w), vδ) + αR(w). (1.2)

Here

• w is an element of the set of admissible functions.
• F is an operator modeling the image formation process
(except the noise).

• D is called the data or fidelity term, which is used to
compare a pair of data in the image domain, that is to
quantify the difference of the two data sets.

• R is called regularization functional, which is used to
impose certain properties onto a minimizer of the regu-
larization functional F.

• α > 0 is called regularization parameter and provides a
trade off between stability and approximation properties
of the minimizer of the regularization functional F.

• vδ denotes measurement data, which we consider noisy.
• v0 denotes the exact data, which we assume to be not

necessarily available.

The main objective of this paper is to introduce a general
class of regularization functionals for functions with values
in a set of vectors. In order to motivate our proposed class of
regularization functionals,we review a class of regularization
functionals appropriate for analyzing intensity data.

1.1 Variational Regularization for Reconstruction of
Intensity Data

Opposite to what we consider in the present paper, most
commonly, imaging data v and admissible functions w,
respectively, are considered to be representable as intensity
functions. That is, they are functions from some subset � of
an Euclidean space with real values.

In such a situation, the most widely used regularization
functionals use regularization terms consisting of powers of
Sobolev (see [12,15,16]) or total variation semi-norms [54].
It is common to speak about Tikhonov regularization (see,
for instance, [59]) when the data term and the regulariza-
tion functional are squaredHilbert space norms, respectively.
For the Rudin, Osher, Fatemi (ROF) regularization [54], also
known as total variation regularization, the data term is the
squared L2-norm and R(w) = |w|T V is the total variation
semi-norm. Nonlocal regularization operators based on the
generalized nonlocal gradient are used in [35].

Other widely used regularization functionals are spar-
sity promoting [22,41], Besov space norms [42,46] and
anisotropic regularization norms [47,56]. Aside from various

regularization terms, there also have been proposed different
fidelity terms other than quadratic norm fidelities, like the p-
th powers of �p and L p-norms of the differences of F(w) and
v , [55,57], maximum entropy [26,28] and Kullback–Leibler
divergence [52] (see [50] for some reference work).

Our work utilizes results from the seminal paper of
Bourgain, Brézis and Mironescu [14], which provides an
equivalent derivative-free characterization of Sobolev spaces
and the space BV (�,RM ), the spaceof functions of bounded
total variation, which consequently, in this context, was ana-
lyzed in Dávila and Ponce [23,49], respectively. It is shown
in [14, Theorems 2 and 3’] and [23, Theorem 1] that when
(ρε)ε>0 is a suitable sequence of nonnegative, radially sym-
metric, radially decreasing mollifiers, then

lim
ε↘0

R̃ε(w) := lim
ε↘0

∫

�×�

‖w(x) − w(y)‖p
R

‖x − y‖p
RN

ρε(x − y) d(x, y)

=

⎧⎪⎨
⎪⎩
Cp,N |w|p

W 1,p if w ∈ W 1,p(�,R), 1 < p < ∞,

C1,N |w|T V if w ∈ BV (�,R), p = 1,

∞ otherwise,

(1.3)

Hence, R̃ε approximates powers of Sobolev semi-norms and
the total variation semi-norm, respectively. Variational imag-
ing, consisting in minimization of F from Eq. 1.2 with R
replaced by R̃ε, has been considered in [3,11].

1.2 Regularization of Functions with Values in a Set
of Vectors

In this paper we generalize the derivative-free characteriza-
tion of Sobolev spaces and functions of bounded variation
to functions u : � → K , where K is some set of vectors,
and use these functionals for variational regularization. The
applications we have in mind contain that K is a closed sub-
set of RM (for instance, HSV data) with nonzero measure,
or that K is a submanifold (for instance, InSAR data).

The reconstruction of manifold-valued data with varia-
tional regularization methods has already been subject to
intensive research (see, for instance, [4,17–19,40,62]). The
variational approaches mentioned above use regularization
and fidelity functionals based on Sobolev and TV semi-
norms: a total variation regularizer for cyclic data on S

1

was introduced in [18,19], see also [7,9,10]. In [4,6] com-
bined first- and second-order differences and derivatives
were used for regularization to restore manifold-valued data.
The later mentioned papers, however, are formulated in a
finite-dimensional setting, opposed to ours, which is consid-
ered in an infinite-dimensional setting. Algorithms for total
variation minimization problems, including half-quadratic
minimization and nonlocal patch-based methods, are given,
for example, in [4,5,8] as well as in [37,43]. On the theo-
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retical side the total variation of functions with values in a
manifold was investigated by Giaquinta and Mucci using the
theory of Cartesian currents in [33,34], and earlier [32] if the
manifold is S

1.

1.3 Content and Particular Achievements of the
Paper

The contribution of this paper is to introduce and analyt-
ically analyze double integral regularization functionals for
reconstructing functionswith values in a set of vectors, gener-
alizing functionals of the formEq. 1.3.Moreover, we develop
and analyze fidelity terms for comparing manifold-valued
data. Summing these two terms provides a new class of reg-
ularization functionals of the form Eq. 1.2 for reconstructing
manifold-valued data.

When analyzing our functionals, we encounter several dif-
ferences to existing regularization theory (compare Sect. 2):

(i) The admissible functions, where we minimize the reg-
ularization functional on, do form only a set but not a
linear space. As a consequence, well-posedness of the
variational method (that is, existence of a minimizer
of the energy functional) cannot directly be proven by
applying standard direct methods in the Calculus of
Variations [20,21].

(ii) The regularization functionals are defined via metrics
and not norms, see Sect. 3.

(iii) In general, the fidelity terms are non-convex. Stability
and convergence results are proven in Sect. 4.

Themodel is validated in Sect. 6 where we present numer-
ical results for denoising and inpainting of data of InSAR
type.

2 Setting

In the following we introduce the basic notation and the set
of admissible functions which we are regularizing on.

Assumption 2.1 All along this paper, we assume that

• p1, p2 ∈ [1,+∞), s ∈ (0, 1],
• �1,�2 ⊆ RN are nonempty, bounded and connected
open sets with Lipschitz boundary, respectively,

• k ∈ [0, N ],
• K1 ⊆ RM1 , K2 ⊆ RM2 are nonempty and closed subsets

of RM1 and RM2 , respectively.

Moreover,

• ‖ · ‖RN and ‖ · ‖RMi , i = 1, 2, are the Euclidean norms
on RN and RMi , respectively.

• dRMi : RMi × RMi → [0,+∞) denotes the Euclidean
distance on RMi for i = 1, 2 and

• di := dKi : Ki × Ki → [0,+∞) denote arbitrary met-
rics on Ki , which fulfill for i = 1 and i = 2

– dRMi |Ki×Ki ≤ di ,
– di is continuouswith respect to dRMi |Ki×Ki ,meaning

that for a sequence (an)n∈N in Ki ⊆ RMi converging
to some a ∈ Ki we also have di (an, a) → 0.

In particular, this assumption is valid if the metric di is
equivalent to dRMi |Ki×Ki . When the set Ki , i = 1, 2, is
a suitable complete submanifold ofRMi , it seems natural
to choose di as the geodesic distance on the respective
submanifolds.

• (ρε)ε>0 is a Dirac family of nonnegative, radially sym-
metric mollifiers, i.e., for every ε > 0 we have

(i) ρε ∈ C∞
c (RN ,R) is radially symmetric,

(ii) ρε ≥ 0,
(iii)

∫
RN

ρε(x) dx = 1, and

(iv) for all δ > 0, lim
ε↘0

∫{‖y‖
RN >δ

} ρε(y) dy = 0.

We demand further that, for every ε > 0,
(v) there exists a τ > 0 and ητ > 0 such that {z ∈ RN :

ρε(z) ≥ τ } = {z ∈ RN : ‖z‖RN ≤ ητ }.
This condition holds, e.g., if ρε is a radially decreasing
continuous function with ρε(0) > 0.

• When we write p, �, K , M , then we mean pi , �i , Ki ,
Mi , for either i = 1, 2. In the following we will often
omit the subscript indices whenever possible.

Example 2.2 Let ρ̂ ∈ C∞
c (R,R+) be symmetric at 0, mono-

tonically decreasing on [0,∞) and satisfy

∣∣∣SN−1
∣∣∣
∫ ∞

0
t̂ N−1ρ̂

(
t̂
)
dt̂ = 1.

Defining mappings ρε : RN → R by

ρε(x) := 1

εN
ρ̂

(‖x‖RN

ε

)

constitutes then a family (ρε)ε>0 which fulfills the above
properties (i)–(v). Note here that

• by substitution x = tθ with t > 0, θ ∈ S
N−1 and t̂ = t

ε
,

∫
RN

ρε(x) dx = 1

εN

∫
RN

ρ̂

(‖x‖RN

ε

)
dx

= 1

εN

∫ ∞

0
t N−1ρ̂

(
t

ε

)
dt

∫
SN−1

dθ

=
∣∣∣SN−1

∣∣∣
∫ ∞

0
t̂ N−1ρ̂

(
t̂
)
dt̂ = 1 .

(2.1)
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Here, dθ refers to the canonical spherical measure.
• Again by the same substitutions, taking into account that

ρ̂ has compact support, it follows for ε > 0 sufficiently
small that

∫
{
y:‖y‖

RN >δ
} ρε(x) dx = 1

εN

∫
{
y:‖y‖

RN >δ
} ρ̂

(‖x‖RN

ε

)
dx

= 1

εN

∫ ∞

δ

t N−1ρ̂

(
t

ε

)
dt

∫
SN−1

dθ

=
∣∣∣SN−1

∣∣∣
∫ ∞

δ/ε

t̂ N−1ρ̂
(
t̂
)
dt̂ = 0 .

(2.2)

In the following we write down the basic spaces and sets,
which will be used in the course of the paper.

Definition 2.3 • The Lebesgue–Bochner space of RM -
valued functions on � consists of the set

L p(�,RM ) :=
{
φ : � → RM :

φ is Lebesgue–Borel measurable and

‖φ(·)‖p
RM : � → R is Lebesgue-integrable on �

}
,

which is associated with the norm ‖ · ‖L p(�,RM ), given
by

‖φ‖L p(�,RM ) :=
⎛
⎝

∫

�

‖φ(x)‖p
RM dx

⎞
⎠

1/p

.

• Let 0 < s < 1. Then the fractional Sobolev space of
order s can be defined (cf. [1]) as the set

Ws,p(�,RM )

:=

⎧⎪⎨
⎪⎩w ∈ L p(�,RM ) : ‖w(x) − w(y)‖RM

‖x − y‖
N
p +s

RN

∈ L p(� × �,R)

⎫⎪⎬
⎪⎭

=
{
w ∈ L p(�,RM ) : |w|Ws,p(�,RM ) < ∞

}
,

equipped with the norm

‖ · ‖Ws,p(�,RM ):=
(
‖ · ‖p

L p(�,RM )
+ |·|p

Ws,p(�,RM )

)1/p
,

(2.3)

where |·|Ws,p(�,RM ) is the semi-norm forWs,p(�,RM ),
given by

|w|Ws,p(�,RM )

:=
⎛
⎝

∫

�×�

‖w(x) − w(y)‖p
RM

‖x − y‖N+ps
RN

d(x, y)

⎞
⎠

1/p

,

w ∈ Ws,p(�,RM ) . (2.4)

• For s = 1 the Sobolev spaceW 1,p(�,RM ) consists of all
weakly differentiable functions in L1(�,RM ) for which

‖w‖W 1,p(�,RM ) :=
⎛
⎜⎝ ‖w‖p

L p(�,RM )

+
∫

�

‖∇w(x)‖p
RM×N dx

⎞
⎠
1/p

< ∞ ,

where ∇w is the weak Jacobian of w.
• Moreover, we recall one possible definition of the space

BV (�,RM ) from [2], which consists of all Lebesgue–
Borel measurable functions w : � → RM for which

‖w‖BV (�,RM ) := ‖w‖L1(�,RM ) + |w|BV (�,RM ) < ∞,

where

|w|BV (�,RM )

:= sup

⎧⎨
⎩
∫

�

w(x) · Divϕ(x) dx : ϕ ∈ C1
c (�,RM×N )

such that ‖ϕ‖∞ := ess sup
x∈�

‖ϕ(x)‖F ≤ 1

⎫⎬
⎭ ,

where ‖ϕ(x)‖F is the Frobenius-norm of the matrix ϕ(x)
and Divϕ = (divϕ1, . . . , divϕM )T denotes the row–wise
formed divergence of ϕ.

Lemma 2.4 Let 0 < s ≤ 1 and p ∈ [1,∞), then
Ws,p(�,RM ) ↪→ L p(�,RM ) and the embedding is com-
pact. Moreover, the embedding BV (�,RM )↪→L p(�,RM )

is compact for all

1 ≤ p < 1∗ :=
{

+∞ if N = 1
N

N−1 otherwise
.

Proof The first result can be found in [24] for 0 < s < 1 and
in [29] for s = 1. The second assertion is stated in [2]. �
Remark 2.5 Let Assumption 2.1 hold. We recall some basic
properties of weak convergence in Ws,p(�,RM ),
W 1,p(�,RM ) and weak* convergence in BV (�,RM ) (see,
for instance, [1,2]):

• Let p > 1, s ∈ (0, 1] and assume that (wn)n∈N is
bounded in Ws,p(�,RM ). Then there exists a
subsequence (wnk )k∈N which converges weakly in
Ws,p(�,RM ).

• Assume that (wn)n∈N is bounded in BV (�,RM ). Then
there exists a subsequence (wnk )k∈N which converges
weakly* in BV (�,RM ).
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Before introducing the regularization functional, which
we investigate theoretically and numerically, we give the def-
inition of some sets of (equivalence classes of) admissible
functions.

Definition 2.6 For 0 < s ≤ 1, p ≥ 1 and a nonempty closed
subset K ⊆ RM , we define

L p(�, K ) := {φ ∈ L p(�,RM ) : φ(x) ∈ K for a.e. x ∈ �};
Ws,p(�, K ) := {w ∈ Ws,p(�,RM ) : w(x) ∈ K for a.e. x ∈ �},
BV (�, K ) := {w ∈ BV (�,RM ) : w(x) ∈ K for a.e. x ∈ �}.

and equip each of these (in general nonlinear) sets with some
subspace topology:

• L p(�, K ) ⊆ L p(�,RM ) is associated with the strong
L p(�,RM )-topology,

• Ws,p(�, K ) ⊆ Ws,p(�,RM ) is associated with the
weak Ws,p(�,RM )-topology, and

• BV (�, K ) ⊆ BV (�,RM ) is associated with the weak*
BV (�,RM )-topology.

Moreover, we define

W (�, K ) :=
⎧⎨
⎩
Ws,p(�, K ) for p ∈ (1,∞) and s ∈ (0, 1],
BV (�, K ) for p = 1 and s = 1 .

(2.5)

Consistently, W (�, K )

• is associated with the weak Ws,p(�,RM )-topology in
the case p ∈ (1,∞) and s ∈ (0, 1] and

• with the weak* BV (�,RM )-topology when p = 1 and
s = 1.

When we speak about

convergence on W (�, K ) we write
W (�,K )−→ or simply

W→

andmeanweak convergence onWs,p(�, K ) andweak* con-
vergence on BV (�, K ), respectively.

Remark 2.7 • In general L p(�, K ),Ws,p(�, K ) and
BV (�, K ) are sets which do not form a linear space.

• If K = S
1, then Ws,p(�, K ) = Ws,p(�, S

1) as
occurred in [13].

• For an embeddedmanifold K , the dimension of themani-
fold is not necessarily identical with the space dimension
of RM . For instance, if K = S

1 ⊆ R2, then the dimen-
sion of S

1 is 1 and M = 2.

The following lemma shows that W (�, K ) is a sequentially
closed subset of W (�,RM ).

Lemma 2.8 (Sequential closedness of W (�, K ) and
L p(�, K ))

(i) Let w∗ ∈ W (�,RM ) and (wn)n∈N be a sequence in

W (�, K ) ⊆ W (�,RM ) with wn
W (�,RM )−→ w∗ as n →

∞. Then w∗ ∈ W (�, K ) and wn → w∗ in L p(�, K ).
(ii) Let v∗ ∈ L p(�,RM ) and (vn)n∈N be a sequence in

L p(�, K ) ⊆ L p(�,RM )with vn → v∗ in L p(�,RM )

as n → ∞. Then v∗ ∈ L p(�, K ) and there is some
subsequence (vnk )k∈N which converges to v∗ pointwise
almost everywhere, i.e., vnk (x) → v∗(x) as k → ∞ for
almost every x ∈ �.

Proof For the proof of the second part, cf. [27], Chapter VI,
Corollary 2.7, take into account the closedness of K ⊆ RM .
The proof of the first part follows from standard convergence
arguments in Ws,p(�,RM ), BV (�,RM ) and L p(�,RM ),
respectively, using the embeddings fromLemma2.4, an argu-
ment on subsequences and part two. �
Remark 2.9 Lemma 2.4 along with Lemma 2.8 imply that
W (�, K ) is compactly embedded in L p(�, K ), where
these sets are equipped with the bornology inherited from
W (�,RM ) and the topology inherited from L p(�,RM ),
respectively.

In the followingwe postulate the assumptions on the oper-
ator F which will be used throughout the paper:

Assumption 2.10 LetW (�1, K1)be as inEq. 2.5 and assume
that F is an operator from W (�1, K1) to L p2(�2, K2).

We continuewith the definition of our regularization func-
tionals:

Definition 2.11 Let Assumptions 2.1 and 2.10 hold. More-
over, let ε > 0 be fixed and let ρ := ρε be a mollifier.

The regularization functionalFv
α[d2, d1] : W (�1, K1) →

[0,∞] is defined as follows

Fv
α[d2, d1](w) :=

∫

�2

dp2
2 (F(w)(x), v(x)) dx

+ α

∫

�1×�1

dp1
1 (w(x), w(y))

‖x−y‖k+p1s
RN

ρl(x−y) d(x, y),

(2.6)

where

(i) v ∈ L p2(�2, K2),
(ii) s ∈ (0, 1],
(iii) α ∈ (0,+∞) is the regularization parameter,
(iv) l ∈ {0, 1} is an indicator and
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(v)

⎧⎪⎨
⎪⎩
k ≤ N if W (�1, K1) = Ws,p1(�1, K1), 0<s<1,

k = 0 if W (�1, K1) = W 1,p1(�1, K1) or if

W (�1, K1) = BV (�1, K1), respectively.

Setting

�φ, ν�[d2] :=
⎛
⎜⎝
∫

�2

dp2
2 (φ(x), ν(x)) dx

⎞
⎟⎠

1
p2

, (2.7)

and

R[d1](w) :=
∫

�1×�1

dp1
1 (w(x), w(y))

‖x − y‖k+p1s
RN

ρl(x − y) d(x, y),

(2.8)

Equation 2.6 can be expressed in compact form

Fv
α[d2, d1](w) = �F(w), v�

p2
[d2] + αR[d1](w). (2.9)

For convenience we will often skip some of the super- or
subscript and use compact notations like, e.g.,

Fv,F[d2, d1] or F(w) = �F(w), v�p2 + αR(w).

Remark 2.12 (i) l = {0, 1} is an indicator which allows
to consider approximations of Sobolev semi-norms and
double integral representations of the type of Bourgain
et al. [14] in a uniform manner.

• when k = 0, s = 1, l = 1 and when d1 is the
Euclidean distance, we get the double integrals of
the Bourgain et al.-form [14]. Compare with Eq. 1.3.

• When d1 is the Euclidean distance, k = N and l = 0,
we get Sobolev semi-norms.

We expect a relation between the two classes of function-
als for l = 0 and l = 1 as stated in Sect. 5.2.

(ii) When d1 is the Euclidean distance then the second term
in Eq. 2.6 is similar to the ones used in [3,11,14,23,49].

In the following we state basic properties of �·, ·�[d2] and
the functional F.
Proposition 2.13 Let Assumption 2.1 hold.

(i) Then themapping �·, ·�[d2] : L p2(�2, K2)×L p2(�2, K2)

→ [0,+∞] satisfies the metric axioms.
(ii) Let, in addition, Assumption 2.10 hold, assume that

v ∈ L p2(�2, K2) and that both metrics di , i = 1, 2, are
equivalent to dRMi |Ki×Ki , respectively. Then the func-
tional Fv

α[d2, d1] does not attain the value +∞ on its
domain W (�1, K1) �= ∅.

Proof (i) The axioms of non-negativity, identity of indis-
cernibles and symmetry are fulfilled by �·, ·�[d2] since d2
is a metric. To prove the triangle inequality, let φ, ξ, ν ∈
L p2(�2, K2). In the main case �φ, ν�

p2
[d2] ∈ (0,∞)

Hölder’s inequality yields

�φ, ν�
p2
[d2]

=
∫

�2

d2
(
φ(x), ν(x)

)
dp2−1
2

(
φ(x), ν(x)

)
dx

≤
∫

�2

d2
(
φ(x), ξ(x)

)
dp2−1
2

(
φ(x), ν(x)

)
dx

+
∫

�2

d2
(
ξ(x), ν(x)

)
dp2−1
2

(
φ(x), ν(x)

)
dx

≤
⎛
⎜⎝
∫

�2

dp2
2

(
φ(x), ξ(x)

)
dx

⎞
⎟⎠

1
p2

⎛
⎜⎝
∫

�2

dp2
2

(
φ(x), ν(x)

)
dx

⎞
⎟⎠

p2−1
p2

+
⎛
⎜⎝
∫

�2

dp2
2

(
ξ(x), ν(x)

)
dx

⎞
⎟⎠

1
p2

⎛
⎜⎝
∫

�2

dp2
2

(
φ(x), ν(x)

)
dx

⎞
⎟⎠

p2−1
p2

= (
�φ, ξ�[d2] + �ξ, ν�[d2]

)
�φ, ν�

p2−1
[d2] ,

meaning

�φ, ν�[d2] ≤ �φ, ξ�[d2] + �ξ, ν�[d2].

If �φ, ν�[d2] = 0, the triangle inequality is trivially ful-
filled.
In the remaining case �φ, ν�[d2] = ∞ applying the
estimate (a + b)p ≤ 2p−1(a p + bp), see, e.g., [55,
Lemma 3.20], to a = d2(φ(x), ξ(x)) ≥ 0 and b =
d2(ξ(x), ν(x)) ≥ 0 yields

�φ, ν�
p2
[d2] ≤ 2p2−1(�φ, ξ�

p2
[d2] + �ξ, ν�

p2
[d2]

)
,

implying the desired result.
(ii) We emphasize that W (�1, K1) �= ∅ because every con-

stant functionw(·) = a ∈ K1 belongs toWs,p1(�1, K1)

for p1 ∈ (1,∞) and s ∈ (0, 1] as well as to
BV (�1, K1) for p1 = 1 and s = 1. Assume now
that the metrics di are equivalent to dRMi |Ki×Ki for
i = 1 and i = 2, respectively, so that we have an
upper bound di ≤ CdRMi |Ki×Ki . We need to prove that
Fv

α[d2, d1](w) < ∞ for every w ∈ W (�1, K1). Due
to �φ, ν�

p2
[d2] ≤ C p2 ‖φ − ν‖p2

L p2 (�2,R
M2 )

< ∞ for all

φ, ν ∈ L p2(�2, K2) ⊆ L p2(�2,R
M2) it is sufficient to

show R[d1](w) < +∞ for all w ∈ W (�1, K1).

• For W (�1, K1) = BV (�1, K1) this is guaranteed
by [49, Theorem 1.2].

• For W (�1, K1) = W 1,p1(�1, K1) by [14, Theorem
1].
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• For W (�1, K1) = Ws,p1(�1, K1), s ∈ (0, 1), we
distinguish between two cases.
If ‖x − y‖RN < 1, we have that 1

‖x−y‖k+p1s

RN

≤
1

‖x−y‖N+p1s

RN

for k ≤ N and hence

∫

(x,y)∈�1×�1‖x−y‖
RN <1

dp1
1 (w(x), w(y))

‖x − y‖k+p1s
RN

ρl(x − y) d(x, y)

≤ C p1‖ρl‖∞ |w|p1
Ws,p1 (�1,R

M1 )
< ∞ .

If ‖x − y‖RN ≥ 1, we can estimate

∫

(x,y)∈�1×�1‖x−y‖
RN ≥1

dp1
1 (w(x), w(y))

‖x − y‖k+p1s
RN

ρl(x − y) d(x, y)

≤ C p1‖ρl‖∞2p1 |�1| ‖w‖p1
L p1 (�1,R

M1 )
< ∞ .

In summary adding yieldsR[d1](w) < +∞. �

3 Existence

In order to prove existence of aminimizer of the functionalF,
we apply the direct method in the Calculus of Variations (see,
e.g., [20,21]). To this end we verify continuity properties of
�·, ·�[d2] andR[d1], resp.F[d2, d1] and apply them alongwith
the sequential closedness of W (�1, K1), already proven in
Lemma 2.8.

In this context we point out some setting assumptions and
their consequences on F, resp. �·, ·� and R in the following
remark. For simplicity we assume p := p1 = p2 ∈ (1,∞),
� := �1 = �2 and (K , dK ) := (K1, d1) = (K2, d2).

Remark 3.1 • The continuity of dK with respect to
dRM |K×K guarantees lower semicontinuity of �·, ·�[dK ]
and R[dK ].

• The inequality dRM |K×K ≤ dK carries over to the
inequalities ‖̃v − v‖L p(�,RM ) ≤ �̃v, v�[dK ] for all ṽ, v ∈
L p(�, K ), and |w|W (�,RM ) ≤ R[dK ](w) for all w ∈
W (�, K ), allowing to transfer properties like coerciv-
ity from F[dRM , dRM ] to F[dK , dK ]. Moreover, the
extended real-valued metric space (L p(�, K ), �·, ·�[dK ])
stays related to the linear space
(L p(�,RM ), ‖·‖L p(�,RM )) in terms of the topology and
bornology induced by �·, ·�, resp. those inherited by
‖·‖L p(�,RM ).

• The closedness of K ⊆ RM is crucial in showing
that W (�, K ) is a sequentially closed subset of the
linear space W (�,RM ). This closedness property acts

as a kind of replacement for the, a priori not avail-
able, notion of completeness with respect to the “space”
(W (�, K ), �·, ·�,R).

For l = 0, k = N note in the latter item that equipping
W (�, K ) with �·, ·�[d2] and R[d1] does not even lead to an
(extended real-valued) metric space, in contrast to the clas-
sical case (K , dK ) = (RM , dRM ).

We will use the following assumption:

Assumption 3.2 LetAssumption2.1hold,v0 ∈ L p2(�2, K2)

and letW (�1, K1) and the associated topology be as defined
in Eq. 2.5.

In addition we assume:

• F:W (�1, K1) → L p2(�2, K2) is well defined and
sequentially continuous with respect to the specified
topology on W (�1, K1) and

• For every t > 0 and α > 0, the level sets

levelt (Fv0

α [d2, d1]):={w∈W (�1, K1) : Fv0

α [d2, d1]≤t}
(3.1)

are sequentially pre-compact subsets of W (�1,R
M1).

• There exists a t̄ > 0 such that levelt̄ (Fv0

α [d2, d1]) is
nonempty.

• Only those v ∈ L p2(�2, K2) are considered which addi-
tionally fulfill �v, v0�[d2] < ∞.

Remark 3.3 The third condition is sufficient to guaran-
tee Fv0

α [d2, d1] �≡ ∞. In contrast, the condition v0 ∈
L p2(�2, K2), cf. Definition 2.11, might not be sufficient if
d2 is not equivalent to dRM2 |K2×K2 .

Lemma 3.4 Let Assumption 3.2 hold. Then the mappings
�·, ·�[d2], R[d1] and F[d2, d1] have the following continuity
properties:

(i) The mapping �·, ·�[d2] : L p2(�2, K2) × L p2(�2, K2) →
[0,+∞] is sequentially lower semi-continuous, i.e.,
whenever sequences (φn)n∈N, (νn)n∈N in L p2(�2, K2)

converge to φ∗ ∈ L p2(�2, K2) and ν∗ ∈ L p2(�2, K2),
respectively, we have �φ∗, ν∗�[d2] ≤ lim inf

n→∞ �φn, νn�[d2].
(ii) The functional R[d1] : W (�1, K1) → [0,∞] is

sequentially lower semi-continuous, i.e., whenever a
sequence (wn)n∈N in W (�1, K1) converges to some
w∗ ∈ W (�1, K1) we have

R[d1](w∗) ≤ lim inf
n→∞ R[d1](wn).

(iii) The functional F[d2, d1] : W (�1, K1) → [0,∞] is
sequentially lower semi-continuous.
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Proof (i) It is sufficient to show that for every pair of
sequences (φn)n∈N, (νn)n∈N in L p2(�2, K2) which con-
verge to previously fixed elements φ∗ ∈ L p2(�2, K2)

and ν∗ ∈ L p2(�2, K2), respectively, we can extract sub-
sequences (φn j ) j∈N and (νn j ) j∈N, respectively, with

�φ∗, ν∗�[d2] ≤ lim inf
j→∞ �φn j , νn j �[d2].

To this end let (φn)n∈N, (νn)n∈N be some sequences
in L p2(�2, K2) with φn → φ∗ and νn → ν∗ in
L p2(�2, K2). Lemma 2.8 ensures that there exist sub-
sequences (φn j ) j∈N, (νn j ) j∈N converging to φ∗ and ν∗
pointwise almost everywhere, which in turn implies(
φn j (·), νn j (·)

) → (
φ∗(·), ν∗(·)

)
pointwise almost every-

where. Therefrom, together with the continuity of d2 :
K2 × K2 → [0,∞) with respect to dRM2 , cf. Sect. 2, we
obtain by using the quadrangle inequality that

|d2(φn j (x), νn j (x)) − d2(φ∗(x), ν∗(x))|
≤ d2(φn j (x), φ∗(x)) + d2(νn j (x), ν∗(x)) → 0,

and hence

dp2
2

(
φn j (x), νn j (x)

) → dp2
2

(
φ∗(x), ν∗(x)

)

for almost every x ∈ �2.
Applying Fatou’s lemma, we obtain

�φ∗, ν∗�[d2] =
∫

�2

dp2
2 (φ∗(x), ν∗(x)) dx

≤ lim inf
j→∞

∫

�2

dp2
2 (φn j (x), νn j (x)) dx

= lim inf
j→∞ �φn j , νn j �[d2].

(ii) Let (wn)n∈N be a sequence in W (�1, K1) with wn
W→

w∗ as n → ∞. By Lemma 2.8 there is a subsequence
(wn j ) j∈N which converges to w∗ both in L p1(�1, K1)

and pointwise almost everywhere. This further implies
that

dp1
1

(
wn j (x), wn j (y)

) → dp1
1

(
w∗(x), w∗(y)

)

for almost every

(x, y) ∈ �1 × �1 ⊇ {(x, y) ∈ �1 × �1 : x �= y} =: A.

(3.2)

Defining

f j (x, y)

:=
⎧⎨
⎩

d
p1
1 (wn j (x),wn j (y))

‖x−y‖k+ps

RN

ρl (x − y) for (x, y) ∈ A,

0 for (x, y) ∈ (�1×�1)\A,

for all j ∈ N and

f∗(x, y)

:=
⎧⎨
⎩

d
p1
1 (w∗(x),w∗(y))

‖x−y‖k+ps

RN

ρl(x − y) for (x, y) ∈ A,

0 for (x, y) ∈ (�1 × �1)\A,

we thus have f∗(x, y) = lim j→∞ f j (x, y) for almost
every (x, y) ∈ �1 × �1. Applying Fatou’s lemma to
the functions f j yields the assertion, due to the same
reduction as in the proof of the first part.

(iii) It is sufficient to prove that the components G(·) =
�F(·), v�[d2] and R = R[d1] of F[d1, d2] = G + αR
are sequentially lower semi-continuous. To prove that
G is sequentially lower semi-continuous in every w∗ ∈
W (�1, K1), let (wn)n∈N be a sequence in W (�1, K1)

with wn
W→ w∗ as n → ∞. Assumption 3.2, ensur-

ing the sequential continuity of F : W (�1, K1) →
L p2(�2, K2), implies hence F(wn) → F(w∗) in
L p2(�2, K2) as n → ∞. By item (i) we thus obtain
G(w∗) = �F(w∗), v� ≤ lim infn→∞�F(wn), v� =
lim infn→∞ G(wn).
R is sequentially lower semi-continuous by item (ii).

�

Existence of Minimizers

Theproof of the existenceof aminimizer ofF[d2, d1] is along
the lines of the proof in [55], taking into account Remark 3.1.
We will need the following useful lemma, cf. [55], which
links levelt (Fv0

α ) and levelt (Fv
α) for �v, v0� < ∞.

Lemma 3.5 It holds

Fv�[d2, d1](w) ≤ 2p2−1Fv�[d2, d1](w) + 2p2−1�v�, v��
p2
[d2]

for every w ∈ W (�1, K1) and v�, v� ∈ L p2(�2, K2).

Proof Using the fact that for p ≥ 1 we have that |a + b|p ≤
2p−1(|a|p + |b|p), a, b ∈ R∪ {∞} and that �·, ·�[d2] fulfills
the triangle inequality, we obtain

Fv�[d2, d1](w) = �F(w), v��
p2
[d2] + αR[d1](w)

≤ 2p2−1(�F(w), v��p2[d2] + �v�, v��
p2
[d2]

)
+ αR[d1](w)

≤ 2p2−1(Fv�[d2, d1](w) + �v�, v��
p2
[d2]

)
.

�
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Theorem 3.6 Let Assumption 3.2 hold. Then the functional
Fv

α[d2, d1] : W (�1, K1) → [0,∞] attains a minimizer.
Proof We prove the existence of a minimizer via the direct
method. We shortly writeFv forFv

α[d2, d1]. Let (wn)n∈N be
a sequence in W (�1, K1) with

lim
n→∞Fv(wn) = inf

w∈W (�1,K1)
Fv(w). (3.3)

The latter infimum is not +∞, because Fv ≡ +∞
would imply also Fv0 ≡ +∞ due to Lemma 3.5, vio-
lating Assumption 3.2. In particular, there is some c ∈
R such that Fv(wn) ≤ c for every n ∈ N. Applying
Lemma 3.5 yields Fv0(wn) ≤ 2p2−1

(Fv(wn) + �v, v0�
) ≤

2p2−1
(
c + �v, v0�

) =: c̃ < ∞ due to Assumption 3.2.

Since the level set levelc̃(Fv0) is sequentially pre-compact
with respect to the topology given to W (�1,R

M1) we
get the existence of a subsequence (wnk )k∈N which con-
verges to some w∗ ∈ W (�1,R

M1), where actually w∗ ∈
W (�1, K1) due to Lemma 2.8. Because Fv is sequentially
lower semi-continuous, see Lemma 3.4, we have Fv(w∗) ≤
lim infk→∞ Fv(wnk ). Combining this with Eq. 3.3 we obtain

inf
w∈W (�1,K1)

Fv(w) ≤ Fv(w∗)

≤ lim inf
k→∞ Fv(wnk ) = lim

n→∞Fv(wn) = inf
w∈W (�1,K1)

Fv(w).

In particular,Fv(w∗) = inf
w∈W (�1,K1)

Fv(w), meaning thatw∗
is a minimizer of Fv . �

In the following we investigate two examples, which are
relevant for the numerical examples in Sect. 6.

Example 3.7 Weconsider thatW (�1, K1) = Ws,p1(�1, K1)

with p1 > 1, 0 < s < 1 and fix k = N .
If the operator F is norm coercive in the sense that the

implication

‖wn‖L p1 (�1,R
M1 ) → +∞ ⇒ ‖F(wn)‖L p2 (�2,R

M2 ) → +∞
(3.4)

holds true for every sequence (wn)n∈N in Ws,p1(�1, K1) ⊆
Ws,p1(�1,R

M1), then the functional F[d2, d1] :
Ws,p1(�1, K1) → [0,∞]:

F[d2, d1] = �F(w), v�
p2
[d2] + αR[d1](w)

is coercive. This can be seen as follows:
The inequality between d1 and dRM1 |K1×K1 resp. d2 and

dRM2 |K2×K2 , see Assumption 2.1, carries over to F[d2, d1]
and F[dRM2 |K2×K2 , dRM1 |K1×K1 ], i.e.,

F[d2, d1](w) ≥ F[
dRM2 |K2×K2 , dRM1 |K1×K1

]
(w)

for all w ∈ Ws,p1(�1, K1).
Thus, it is sufficient to show that F[dRM2 |K2×K2 ,

dRM1 |K1×K1 ] : Ws,p1(�1, K1) → [0,∞] is coercive: To
prove this, we write shortly F instead of F[dRM2 |K2×K2 ,

dRM1 |K1×K1 ] and consider sequences (wn)n∈N in
Ws,p1(�1, K1)with ‖wn‖Ws,p1 (�1,R

M1 ) → +∞ as n → ∞.
We show that F(wn) → +∞, as n → ∞. Since

‖wn‖Ws,p1 (�1,R
M1 ) =

(
‖wn‖p1

L p1 (�1,R
M1 )

+ |wn|p1Ws,p1 (�1,R
M1 )

) 1
p1

the twomain cases to be considered are ‖wn‖L p1 (�1,R
M1 ) →

+∞ and |wn|Ws,p1 (�1,R
M1 ) → +∞.

Case 1 ‖wn‖L p1 (�1,R
M1 ) → +∞.

The inverse triangle inequality and the norm coercivity
of F, Eq. 3.4, give ‖F(wn) − v‖L p2 (�2,R

M2 ) ≥
‖F(wn)‖L p2 (�2,R

M2 ) − ‖v‖L p2 (�2,R
M2 ) → +∞. Therefore,

also

F(wn) = ‖F(wn) − v‖p2
L p2 (�2,R

M2 )

+α

∫

�1×�1

‖wn(x)−wn(y)‖p1
RM1

‖x−y‖N+p1s
RN

ρl (x−y) d(x, y)→+∞.

Case 2 |wn|Ws,p1 (�1,R
M1 ) → +∞.

If l = 0, then R[d1] is exactly the Ws,p1(�1,R
M1)-semi-

norm |w|Ws,p1 (�1,R
M1 ) and we trivially get the desired result.

Hence, we assume from now on that l = 1. The assumptions
on ρ ensure that there exists a τ > 0 and ητ > 0 such that

Sτ := {(x, y) ∈ �1 × �1 : ρ(x − y) ≥ τ }
= {(x, y) ∈ �1 × �1 : ‖x − y‖RN ≤ ητ },

cf. Fig. 1.
Splitting �1 × �1 into Sτ =: S and its complement
(�1 × �1) \ Sτ =: Sc, we accordingly split the integrals

|wn|Ws,p1 (�1,R
M1 ) = ∫

�1×�1

‖wn(x)−wn(y)‖p1
RM1

‖x−y‖N+p1s

RN

d(x, y) and

consider again two cases
∫
S

‖wn(x)−wn(y)‖p1
RM1

‖x−y‖N+p1s

RN

d(x, y) → +∞

and
∫
Sc

‖wn(x)−wn(y)‖p1
RM1

‖x−y‖N+p1s

RN

d(x, y) → +∞, respectively.

Case 2.1
∫
S

‖wn(x)−wn(y)‖p1
RM1

‖x−y‖N+p1s

RN

d(x, y) → +∞.

By definition of S we have ρ(x − y) ≥ τ > 0 for all
(x, y) ∈ S. Therefore,

123



Journal of Mathematical Imaging and Vision

S

Sc

Ω1 × Ω1

xy = y0

x

ρ(x − y0)

τ

y0

Fig. 1 The stripe S = Sτ if �1 is an open interval and its connection to the radial mollifier ρ for fixed y ∈ �1

∫

S

‖wn(x) − wn(y)‖p1
RM1

‖x − y‖N+p1s
RN

ρ(x − y) d(x, y)

≥ τ

∫

S

‖wn(x) − wn(y)‖p1
RM1

‖x − y‖N+p1s
RN

d(x, y) → +∞.

Since α > 0, it follows

F(wn) = ‖F(wn) − v‖p2
L p2 (�2,R

M2 )

+ α

∫

S

‖wn(x) − wn(y)‖p1
RM1

‖x − y‖N+p1s
RN

ρ(x − y) d(x, y)

︸ ︷︷ ︸
→+∞

+ α

∫

Sc

‖wn(x) − wn(y)‖p1
RM1

‖x − y‖N+p1s
RN

ρ(x − y) d(x, y)

︸ ︷︷ ︸
≥0

→ +∞.

Case 2.2
∫
Sc

‖wn(x)−wn(y)‖p1
RM1

‖x−y‖N+p1s

RN

d(x, y) → +∞.

For (x, y) ∈ Sc it might happen that ρ(x − y) = 0, and

thus instead of proving F(wn) ≥ ∫
Sc

‖wn(x)−wn(y)‖p1
RM1

‖x−y‖N+p1s

RN

ρ(x −
y) d(x, y) → +∞, as in Case 2.1, we rather show that
F(wn) ≥ ‖F(wn) − v‖p2

L p2 (�2,R
M2 )

→ +∞. For this it is

sufficient to show that for every c > 0 there is some C ∈ R

such that the implication

‖F(w) − v‖p2
L p2 (�2,R

M2 )
≤ c

�⇒
∫

Sc

‖w(x) − w(y)‖p1
RM1

‖x − y‖N+p1s
RN

d(x, y) ≤ C,

holds true for all w ∈ Ws,p1(�1, K1) ⊆
Ws,p1(�1,R

M1). To this end let c > 0 be given and con-

sider an arbitrarily chosen w ∈ Ws,p1(�1, K1) fulfilling
‖F(w) − v‖p2

L p2 (�2,R
M2 )

≤ c.

Then ‖F(w) − v‖L p2 (�2,R
M2 ) ≤ p2

√
c. Using the triangle

inequality and the monotonicity of the function h : t �→ t p2

on [0,+∞), we get further

‖F(w)‖p2
L p2 (�2,R

M2 )

= ‖F(w) − v + v‖p2
L p2 (�2,R

M2 )

≤
(
‖F(w) − v‖L p2 (�2,R

M2 ) + ‖v‖L p2 (�2,R
M2 )

)p2

≤ (
p2
√
c + ‖v‖L p2 (�2,R

M2 )

)p2 =: c̃ (3.5)

Due to thenormcoercivity, it thus follows that‖w‖L p1 (�1,R
M1 )

≤ c̄, c̄ some constant. Using [55, Lemma 3.20], it then fol-
lows that

‖w(x) − w(y)‖p1
RM1

≤ 2p1−1‖w(x)‖p1
RM1

+ 2p1−1‖w(y)‖p1
RM1

(3.6)

for all (x, y) ∈ �1 × �1. Using Eq. 3.6, Fubini’s Theorem
and Eq. 3.5 we obtain

∫

�1×�1

‖w(x) − w(y)‖p1
RM1

d(x, y)

≤
∫

�1×�1

2p1−1‖w(x)‖p1
RM1

+ 2p1−1‖w(y)‖p1
RM1

d(x, y)

= |�1|
∫

�1

2p1−1‖w(x)‖p1
RM1

dx

+ |�1|
∫

�1

2p1−1‖w(y)‖p1
RM1

dy

= 2 |�1|
∫

�1

2p1−1‖w(x)‖p1
RM1

dx

= 2p1 |�1| ‖w‖p1
L p1 (�1,R

M1 )
≤ 2p1 |�1| c̄ p1 .
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Combining ‖x − y‖RN ≥ ητ > 0 for all (x, y) ∈ Sc with
the previous inequality, we obtain the needed estimate

∫

Sc

‖w(x) − w(y)‖p1
RM1

‖x − y‖N+p1s
RN

d(x, y)

≤ 1

η
N+p1s
τ

∫

Sc

‖w(x) − w(y)‖p1
RM1

d(x, y)

≤ 1

η
N+p1s
τ

∫

�1×�1

‖w(x) − w(y)‖p1
RM1

d(x, y)

≤ 2p1 |�1| c̄ p1
η
N+p1s
τ

=: C .

The second example concerns the coercivity ofF[d2, d1],
defined in Eq. 2.9, when F denotes the masking operator
occurring in image inpainting. To prove this result,we require
the following auxiliary lemma:

Lemma 3.8 There exists a constant C ∈ R such that for all
w ∈ Ws,p1(�1,R

M1), 0 < s < 1, l ∈ {0, 1}, 1 < p1 < ∞
and D � �1 nonempty such that

‖w‖p1
L p1(D,RM1)

≤ C

⎛
⎜⎝ ‖w‖p1

L p1 (�1\D,RM1 )

+
∫

�1×�1

‖w(x) − w(y)‖p1
RM1

‖x − y‖N+p1s
RN

ρl(x − y) d(x, y)

⎞
⎟⎠ .

(3.7)

Proof The proof is inspired by the proof of Poincaré’s
inequality in [29]. It is included here for the sake of com-
pleteness.

Assume first that l = 1. Let S be as above,

S := {(x, y) ∈ �1 × �1 : ρ(x − y) ≥ τ }
= {(x, y) ∈ �1 × �1 : ‖x − y‖RN ≤ η}.

If the stated inequality Eq. 3.7 would be false, then for every
n ∈ N there would exists a function wn ∈ Ws,p1(�1,R

M1)

satisfying

‖wn‖p1
L p1 (D,RM1 )

≥ n
( ‖wn‖p1

L p1 (�1\D,RM1 )

+
∫

�1×�1

‖wn(x)−wn(y)‖p1
RM1

‖x − y‖N+p1s
RN

ρ(x−y) d(x, y)
)
.

(3.8)

By normalizing we can assume without loss of generality

(i) ‖wn‖p1
L p1(D,RM1)

= 1.

Moreover, by Eq. 3.8

(ii) ‖wn‖p1
L p1 (�1\D,RM1 )

< 1
n ,

(iii)
∫

�1×�1

‖wn(x)−wn(y)‖p1
RM1

‖x−y‖N+p1s

RN

ρ(x − y) d(x, y) < 1
n .

By item (i) and item (ii), we get that ‖wn‖p1
L p1 (�1,R

M1 )
=

‖wn‖p1
L p1(D,RM1)

+ ‖wn‖p1
L p1 (�1\D,RM1 )

< 1 + 1
n < 2 is

bounded. Moreover

|wn |p1Ws,p1 (�1,R
M1 )

=
∫

S

‖wn(x) − wn(y)‖p1
RM1

‖x − y‖N+p1s
RN

d(x, y)

+
∫

Sc

‖wn(x) − wn(y)‖p1
RM1

‖x − y‖N+p1s
RN

d(x, y)

≤ 1

τ

∫

S

‖wn(x) − wn(y)‖p1
RM1

‖x − y‖N+p1s
RN

ρ(x − y) d(x, y)

+ 2p1 |�1|
ηN+p1s

‖wn‖p1
L p1 (�1,R

M1 )

<
1

τn
+ 2p1+1 |�1|

ηN+p1s

≤ 1

τ
+ 2p1+1 |�1|

ηN+p1s
=: c < ∞,

where c is independent of n. This yields that the sequence

(wn)n∈N is bounded inWs,p1(�1,R
M1) by (2+c)

1
p1 . By the

reflexivity of Ws,p1(�1,R
M1) for p1 ∈ (1,∞) and Lemma

2.8, there exists a subsequence (wnk )k∈N of (wn)n∈N and
w∗ ∈ Ws,p1(�1,R

M1) such that wnk → w∗ strongly in
L p1(�1,R

M1) and pointwise almost everywhere.
Using the continuity of the norm and dominated conver-

gence, we obtain

(i) ‖w∗‖p1
L p1(D,RM1)

= 1, in particular, w∗ is not the null

function on D,
(ii) ‖w∗‖p1

L p1 (�1\D,RM1 )
= 0 since n ∈ N is arbitrary and

hence w∗ ≡ 0 on �1 \ D.
(iii)

lim inf
n→∞

1

n

≥ lim inf
n→∞

∫

S

‖wn(x) − wn(y)‖p1
RM1

‖x − y‖N+p1s
RN

ρ(x − y) d(x, y)

≥ τ

ηN+p1s

∫

S
‖w∗(x) − w∗(y)‖p1

RM1
,
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i.e., w∗(x) = w∗(y) for (x, y) ∈ S yielding that w∗
locally constant and hence even constant since �1 is
connected,

which gives the contradiction.
In the case l = 0 we use similar arguments, where the

distance ‖x − y‖RN in the last inequality can be estimated
by diam|�1| (instead of η) since �1 is bounded. �

Remark 3.9 In case l = 1 it follows that the sharper inequal-
ity holds true: There exists a constant C ∈ R such that for
all w ∈ Ws,p1(�1,R

M1), 0 < s < 1, 1 < p1 < ∞ and
D � �1 nonempty such that

‖w‖p1
L p1(D,RM1)

≤ C

⎛
⎜⎝ ‖w‖p1

L p1 (�1\D,RM1 )

+
∫

S

‖w(x) − w(y)‖p1
RM1

‖x − y‖N+p1s
RN

ρl(x − y) d(x, y)

⎞
⎟⎠ . (3.9)

Example 3.10 As in Example 3.7, we consider that
W (�1, K1) = Ws,p1(�1, K1) with p1 > 1, 0 < s < 1
and fix k = N .

Assume that F is the inpainting operator, i.e.,

F(w) = χ�1\D(w),

where D ⊆ �1, w ∈ Ws,p1(�1, K1). Since the dimension
of the dataw and the image data F(w)has the samedimension
at every point x ∈ �1, we write M := M1 = M2.

Then the functional F[d2, d1] : Ws,p1(�1, K1) →
[0,∞]:

F[d2, d1] = �F(w), v�
p2
[d2] + αR[d1](w)

is coercive for p2 ≥ p1:
The fact that p2 ≥ p1 and that�1 is bounded ensures that

L p2(�1\D,RM ) ⊆ L p1(�1\D,RM ). (3.10)

The proof is done using the same arguments as in the proof
of Example 3.7, where we additionally split Case 1 into the
two subcases

Case 1.1 ‖wn‖L p1 (D,RM ) → +∞
Case 1.2 ‖wn‖L p1 (�1\D,RM ) → +∞

and using additionally Lemma 3.8, Eqs. 3.9 and 3.10.

4 Stability and Convergence

In this section we will first show a stability and afterwards a
convergence result.We use the notation introduced in Sect. 2.
In particular, W (�1, K1) is as defined in Eq. 2.5. We also
stress that we use notationally simplified versions Fv of
Fv

α[d2, d1] and R of R[d1] whenever possible. See Eqs. 2.6,
2.7 and 2.8.

Theorem 4.1 Let Assumption 3.2 be satisfied. Let vδ ∈
L p2(�2, K2) and let (vn)n∈N be a sequence in L p2(�2, K2)

such that �vn, v
δ�[d2] → 0. Then every sequence (wn)n∈N

with

wn ∈ argmin{Fvn
α [d2, d1](w) : w ∈ W (�1, K1)}

has a converging subsequence w.r.t. the topology of
W (�1, K1). The limit w̃ of any such converging subse-
quence (wnk )k∈N is a minimizer of Fvδ [d2, d1]. Moreover,
(R(wnk ))k∈N converges toR(w̃).

The subsequent proof of Theorem 4.1 is similar to the
proof of [55, Theorem 3.23].

Proof For the ease of notation, we simply write Fvδ
instead

of Fvδ

α [d2, d1] and �v, ṽ� = �v, ṽ�[d2].
By assumption the sequence (�vn, v

δ�)n∈N converges to
0 and thus is bounded, i.e., there exists B ∈ (0,+∞) such
that

�vn, v
δ� ≤ B for all n ∈ N. (4.1)

Becausewn ∈ argmin{Fvn (w) : w ∈ W (�1, K1)} it follows
that

Fvn (wn) ≤ Fvn (w) for all w ∈ W (�1, K1). (4.2)

By Assumption 3.2 there is a w ∈ W (�1, K1) such that
Fv0(w) < ∞. Set c := 2p2−1. Using Assumption 3.2 and
applying Lemma 3.5, Eqs. 4.2 and 4.1 implies that for all
n ∈ N

Fvδ

(wn) ≤ cFvn (wn) + c�vn, v
δ�p2

≤ cFvn (w) + cB p2

≤ c
[
cFvδ

(w) + c�vδ, vn�
p2
] + cB p2

≤ c2Fvδ

(w) + (c2 + c)B p2

≤ c3
(Fv0(w) + �v0, vδ�

)
+ (c2 + c)B p2 =: m < ∞.

Applying againLemma3.5,weobtainFv0(wn)≤cFvδ
(wn)+

c�vδ, v0�p2 ≤ m + c�vδ, v0�p2 =: m̃ < ∞. Hence, from
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item (3.1) it follows that the sequence (wn)n∈N contains a
converging subsequence.

Let now (wnk )k∈N be an arbitrary subsequence of (wn)n∈N
which converges in W (�1, K1) to some w̃ ∈ W (�1,R

M1).
Then, from Lemma 2.8 and the continuity properties of
F it follows that w̃ ∈ W (�1, K1) and (F(wnk ), vnk ) →
(F(w̃), vδ) in L p2(�2, K2)× L p2(�2, K2). Moreover, using
Lemma 3.4, Eq. 4.2 and the triangle inequality it follows that
for every w ∈ W (�1, K1) the following estimate holds true

Fvδ

(w̃) = �F(w̃), vδ�p2 + αR(w̃)

≤ �F(w̃), vδ�p2 + α lim inf
k→∞ R(wnk )

≤ �F(w̃), vδ�p2 + α lim sup
k→∞

R(wnk )

≤ lim inf
k→∞ �F(wnk ), vnk �

p2 + α lim sup
k→∞

R(wnk )

≤ lim sup
k→∞

Fvnk (wnk )

≤ lim sup
k→∞

Fvnk (w)

=
(
lim sup
k→∞

�F(w), vnk �

)p2
+ αR(w)

≤
(
lim sup
k→∞

(
�F(w), vδ� + �vδ, vnk �

))p2
+ αR(w)

= lim sup
k→∞

(
�F(w), vnk �

p2 + αR(w)
)

= �F(w), vδ�p2 + αR(w)

= Fvδ

(w).

This shows that w̃ is aminimizer ofFvδ
. Choosingw = w̃

in the previous estimate, we obtain the equality

�F(w̃), vδ�p2 + αR(w̃)

= �F(w̃), vδ�p2 + α lim inf
k→∞ R(wnk )

= �F(w̃), vδ�p2 + α lim sup
k→∞

R(wnk ) .

Due to �F(w̃), vδ�p2 ≤ Fvδ
(w̃) ≤ m < ∞ this gives

R(w̃) = lim
k→∞R(wnk ).

�
Before proving the next theorem, we need the following

definition, cf. [55].

Definition 4.2 Let v0 ∈ L p2(�2, K2). Every element w∗ ∈
W (�1, K1) fulfilling

F(w∗) = v0

R(w∗) = min{R(w) : w ∈ W (�1, K1), F(w) = v0}.
(4.3)

is called anR-minimizing solution of the equationF(w) = v0

or shorter just R-minimizing solution.

The following theorem and its proof are inspired by [55,
Theorem 3.26].

Theorem 4.3 Let Assumption 3.2 be satisfied. Let there exist
an R-minimizing solution w† ∈ W (�1, K1) and let α :
(0,∞) → (0,∞) be a function satisfying

α(δ) → 0 and
δ p2

α(δ)
→ 0 for δ → 0. (4.4)

Let (δn)n∈N be a sequence of positive real numbers converg-
ing to 0.Moreover, let (vn)n∈N be a sequence in L p2(�2, K2)

with �v0, vn�[d2] ≤ δn and set αn := α(δn).
Then every sequence (wn)n∈N of minimizers

wn ∈ argmin{Fvn
αn

[d2, d1](w) : w ∈ W (�1, K1)}

has a converging subsequence wnk
W→ w̃ as k → ∞, and

the limit w̃ is always anR-minimizing solution. In addition,
R(wnk ) → R(w̃).

Moreover, if w† is unique, it follows that wn
W→ w† and

R(wn) → R(w†).

Proof Wewrite shortly �·, ·� for �·, ·�[d2]. Taking into account
that wn ∈ argmin{Fvn

αn
[d2, d1](w) : w ∈ W (�1, K1)} it

follows that

�F(wn), vn�
p2 ≤ Fvn

αn
(wn) ≤ Fvn

αn
(w†)

= �v0, vn�
p2 + αnR(w†) ≤ δ

p2
n + αnR(w†) → 0,

yielding �F(wn), vn� → 0 as n → ∞. The triangle inequal-
ity gives �F(wn), v

0� ≤ �F(wn), vn�+�vn, v
0� → 0 as n →

∞ and Remark 3.1 ensures
∥∥F(wn) − v0

∥∥
L p2 (�2,R

M2 )
≤

�F(wn), v
0� → 0 as n → ∞, so that

F(wn) → v0 in L p2(�2,R
M2). (4.5)

Since

R(wn) ≤ 1

αn
Fvn

αn
(wn) ≤ 1

αn
Fvn

αn
(w†)

= 1

αn

(
�v0, vn�

p2 + αnR(w†)
)

≤ δ
p2
n

αn
+ R(w†),

we also get

lim sup
n→∞

R(wn) ≤ R(w†). (4.6)

Set αmax := max{αn : n ∈ N}. Since
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lim sup
n→∞

Fv0

αn
(wn) ≤ lim sup

n→∞
(
�F(wn), v

0�p2 + αmaxR(wn)
)

≤ αmaxR(w†)

the sequence Fv0

αmax
(wn) is bounded. From Assumption 3.2,

item (3.1) it follows that there exists a converging subse-
quence (wnk )k∈N of (wn)n∈N. The limit of (wnk )k∈N is
denoted by w̃. Then, from Lemma 2.8 it follows that w̃ ∈
W (�1, K1). Since the operator F is sequentially continuous,
it follows that F(wnk ) → F(w̃) in L p2(�2, K2). This shows
that actually F(w̃) = v0 since Eq. 4.5 is valid. Then, from
Lemma 3.4 it follows that the functionalR : W (�1, K1) →
[0,+∞] is sequentially lower semi-continuous, so that
R(w̃) ≤ lim infk→∞ R(wnk ). Combining this with Eq. 4.6,
we also obtain

R(w̃) ≤ lim inf
k→∞ R(wnk ) ≤ lim sup

k→∞
R(wnk ) ≤ R(w†)

≤ R(w̃),

using the definition of w†. This, together with the fact that
F(w̃) = v0 we see that w̃ is an R-minimizing solution and
that limk→∞ R(wnk ) = R(w̃).

Now assume that the solution fulfilling Eq. 4.3 is unique;

we call it w†. In order to prove that wn
W→ w†, it is suffi-

cient to show that any subsequence has a further subsequence
converging to w†, cf. [55, Lemma 8.2]. Hence, denote by
(wnk )k∈N an arbitrary subsequence of (wn), the sequence

of minimizers. Like before we can show that Fv0

α (wnk )

is bounded and we can extract a converging subsequence
(wnkl

)l∈N. The limit of this subsequence is w† since it is

the unique solution fulfilling Eq. 4.3, showing that wn
W→

w†. Moreover, w† ∈ W (�1, K1). Following the arguments
above, we obtain as well limn→∞ R(wn) = R(w†). �
Remark 4.4 Theorem 4.1 guarantees that the minimizers of
Fvn

α [d2, d1] depend continuously on vδ , while Theorem 4.3
ensures that they converge to a solution of F(w) = v0, v0 the
exact data, while α tends to zero.

5 Discussion of the Results and Conjectures

In this section we summarize some open problems related
to double integral expressions of functions with values on
manifolds.

5.1 Relation to Single Integral Representations

In the following we show for one particular case of func-
tions that have values in a manifold, that the double integral
formulation R[d1], defined in Eq. 2.8, approximates a single
energy integral. The basic ingredient for this derivation is

the exponential map related to the metric d1 on the manifold.
In the following we investigate manifold-valued functions
w ∈ W 1,2(�,M), where we consider M ⊆ RM×1 to be a
connected, complete Riemannianmanifold. In this case some
of the regularization functionalsR[d1], defined in Eq. 2.8, can
be considered as approximations of single integrals. In par-
ticular, we aim to generalize Eq. 1.3 in the case p = 2.

We have that

∇w =

⎡
⎢⎢⎣

∂w1
∂x1

· · · ∂w1
∂xN

...
. . .

...
∂wM
∂x1

· · · ∂wM
∂xN

⎤
⎥⎥⎦ ∈ RM×N .

In the following we will write R[d1],ε instead of 1
2Rd1 to

stress the dependence on ε in contrast to above; the factor
1
2 was added due to reasons of calculation. Moreover, let
ρ̂ : R+ → R+ be in C∞

c (R+,R+) and satisfy

∣∣∣SN−1
∣∣∣
∫ ∞

0
t̂ N−1ρ̂

(
t̂
)
dt̂ = 1 .

Then for every ε > 0

x ∈ Rn �→ ρε(x) := 1

εN
ρ̂

(‖x‖RN

ε

)

is a mollifier, cf. Example 2.2.
R[d1],ε (with p1 = 2) then reads as follows:

R[d1],ε(w) := 1

2

∫

�×�

d21 (w(x), w(y))

‖x − y‖2
RN

ρε(x − y) d(x, y) .

(5.1)

Substitution with spherical coordinates y = x − tθ ∈ RN×1

with θ ∈ S
N−1 ⊆ RN×1, t ≥ 0 gives

lim
ε↘0

R[d1],ε(w)

= lim
ε↘0

1

εN

∫

�

∫

SN−1

∞∫

0

1

2
d21 (w(x), w(x−tθ))t N−3ρ̂

(
t

ε

)
dt dθ dx .

(5.2)

Now, using that form1 ∈ M fixed andm2 ∈ M such thatm1

and m2 are joined by a unique minimizing geodesic (see, for
instance, [30] where the concept of exponential mappings is
explained)

1

2
∂2d

2
1 (m1,m2) = −(expm2

)−1(m1) ∈ RM×1, (5.3)
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where ∂2 denotes the derivative of d21 with respect to the
second component. By application of the chain rule we get

− 1

2
∇yd

2
1 (w(x), w(y))

= (∇w(y))T︸ ︷︷ ︸
∈RN×M

(expw(y))
−1(w(x))︸ ︷︷ ︸

∈RM×1

∈ RN×1 ,

where w(x) and w(y) are joined by a unique minimizing
geodesic. This assumption seems reasonable due to the fact
that we consider the case ε ↘ 0. Let · denote the scalar
multiplication of two vectors inRN×1, then the last equality
shows that

1

2
d21 (w(x), w(x − tθ))

= −1

2

[
d21

(
w(x), w((x − tθ) + tθ)

)

− d21
(
w(x), w(x − tθ)

)]

≈
(
(∇w(x − tθ))T (expw(x−tθ))

−1(w(x))
)

· tθ .

Thus, from Eq. 5.2 it follows that

lim
ε↘0

R[d1],ε(w)

≈ lim
ε↘0

1

εN

∫

�

∫

SN−1

∞∫

0

(
(∇w(x − tθ))T (expw(x−tθ))

−1(w(x))
)

·θ
(
t N−2ρ̂

(
t

ε

))
dt dθ dx . (5.4)

Now we will use a Taylor series of power 0 for t �→ ∇w(x −
tθ) and of power 1 for t �→ (expw(x−tθ))

−1(w(x)) to rewrite
Eq. 5.4. We write

F(w; x, t, θ) := (expw(x−tθ))
−1(w(x)) ∈ RM×1 (5.5)

and define

Ḟ(w; x, θ) := lim
t↘0

1

t

⎛
⎜⎝(expw(x−tθ))

−1(w(x))

− (expw(x))
−1(w(x))︸ ︷︷ ︸

=0

⎞
⎟⎠ ∈ RM×1. (5.6)

Note that because (expw(x))
−1(w(x)) vanishes, Ḟ(w(x); θ)

is the leading order term of the expansion of (expw(x−tθ))
−1

(w(x))with respect to t . Moreover, in the case that∇w(x) �=
0 this is the leading order approximation of ∇w(x − tθ). In
summary we are calculating the leading order term of the
expansion with respect to t .

Then from Eq. 5.4 it follows that

lim
ε↘0

R[d1],ε(w) ≈ lim
ε↘0

1

εN

∞∫

0

t N−1ρ̂

(
t

ε

)
dt

︸ ︷︷ ︸
=|SN−1|−1

×
∫

�

∫

SN−1

(
(∇w(x))T Ḟ(w; x, θ)

)
· θ dθ dx . (5.7)

The previous calculations show that the double integral sim-
plifies to a double integralwhere the inner integration domain
has one dimension less than the original integral. Under
certain assumption the integration domain can be further sim-
plified:

Example 5.1 If d1(x, y) = ‖x − y‖RM , p1 = 2, then

Ḟ(w; x, θ) = lim
t↘0

1

t
(w(x) − w(x − tθ))

= ∇w(x)θ ∈ RM×1.

Thus, from (5.7) it follows that

lim
ε↘0

R[d1],ε(w) ≈
∫

�

(∇w(x))T∇w(x)︸ ︷︷ ︸
‖∇w(x)‖2

RM

dx . (5.8)

This is exactly the identity derived in Bourgain et al. [14].

From these considerations we can view limε↘0 R[d1],ε as
functionals, which generalize Sobolev and BV semi-norms
to functions with values on manifolds.

5.2 A Conjecture on Sobolev Semi-norms

Starting point for this conjecture is Eq. 2.8. We will write
�, M and p instead of �1, M1 and p1.

• In the case l = 0, k = N , 0 < s < 1 and
d1(w(x), w(y)) = ‖w(x) − w(y)‖RM the functional
R[d1] from Eq. 2.8 simplifies to the p-th power of the
Sobolev semi-norm and reads

∫

�×�

‖w(x) − w(y)‖p
RM

‖x − y‖N+ps
RN

d(x, y). (5.9)

For a recent survey on fractional Sobolev spaces, see [25].
• On the other hand, when we choose k = 0, l = 1 and
d1(w(x), w(y)) = ‖w(x) − w(y)‖RM , then R[d1] from
Eq. 2.8 reads (note ρ = ρε by simplification of notation):

∫

�×�

‖w(x) − w(y)‖p
RM

‖x − y‖ps
RN

ρε(x − y) d(x, y). (5.10)
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• Therefore, in analogy to what we know for s = 1 from
[14], we conjecture that

lim
ε→0

∫

�×�

‖w(x) − w(y)‖p
RM

‖x − y‖ps
RN

ρε(x − y) d(x, y)

= C
∫

�×�

‖w(x) − w(y)‖p
RM

‖x − y‖N+ps
RN

d(x, y). (5.11)

The form Eq. 5.11 is numerically preferable to the stan-
dard Sobolev semi-norm Eq. 5.9, because ρ = ρε and
thus the integral kernel has compact support.

6 Numerical Examples

In this section we present some numerical examples for
denoising and inpainting of functions with values on the cir-
cle S

1. Functions with values on a sphere have already been
investigated very diligently (see, for instance, [13] out of
series of publications of these authors). Therefore, we review
some of their results first.

6.1 S
1-Valued Data

Let ∅ �= � ⊂ R or R2 be a bounded and simply connected
open set with Lipschitz boundary. In [13] the question was
considered when w ∈ Ws,p(�, S

1) can be represented by
some function u ∈ Ws,p(�,R) satisfying

�(u) := eiu = w. (6.1)

That is, the function u is a lifting of w.

Lemma 6.1 ([13])

• Let � ⊂ R, 0 < s < ∞, 1 < p < ∞. Then for all
w ∈ Ws,p(�, S

1) there exists u ∈ Ws,p(�,R) satisfy-
ing Eq. 6.1.

• Let� ⊂ RN , N ≥ 2, 0 < s < 1, 1 < p < ∞. Moreover,
let sp < 1or sp ≥ N, then for allw ∈ Ws,p(�, S

1) there
exists u ∈ Ws,p(�,R) satisfying Eq. 6.1.
If sp ∈ [1, N ), then there exist functionsw ∈ Ws,p(�, S

1)

such that Eq. 6.1 does not hold with any function u ∈
Ws,p(�,R).

For

dS1(a, b) := arccos(aTb) , a, b ∈ S
1, (6.2)

we consider the functional (note that by simplification of
notation below ρ = ρε denotes a mollifier)

R[d
S1 ](w) =

∫

�×�

dp
S1

(w(x), w(y))

‖x − y‖k+ps
RN

ρl(x − y) d(x, y),

(6.3)

on w ∈ Ws,p(�, S
1), in accordance to Eq. 2.8.

Writing w = �(u) as in Eq. 6.1, we get the lifted func-
tional

R�[d
S1 ](u):=

∫

�×�

dp
S1

(�(u)(x),�(u)(y))

‖x − y‖k+ps
RN

ρl(x − y) d(x, y),

(6.4)

over the space Ws,p(�,R).

Remark 6.2 • We note that in the case k = 0, s = 1 and
l = 1 these integrals correspondwith the ones considered
in Bourgain et al. [14] for functions with values on S

1.
• If we choose k = N , s = 1 and l = 0, then this corre-
sponds with Sobolev semi-norms on manifolds.

• Let ε > 0 fixed (that is, we consider neither a standard
Sobolev regularization nor the limiting case ε → 0 as
in [14]). In this case we have proven coercivity of the
functionalF : Ws,p(�, S

1) → [0,∞), 0 < s < 1, only
with the following regularization functional, cf. Example
3.7 and Example 3.10:

∫

�×�

dp
S1

(w(x), w(y))

‖x − y‖N+ps
RN

ρε(x − y) d(x, y).

We summarize a few results: The first lemma follows from
elementary calculations:

Lemma 6.3 dS1 and dR2

∣∣
S1×S1

are equivalent.

Lemma 6.4 Let u ∈ Ws,p(�,R). Then�(u) ∈ Ws,p(�, S
1).

Proof This follows directly from the inequality ‖eia−eib‖ ≤
‖a − b‖ for all a, b ∈ R. �
Below we show that R�[d

S1 ] is finite on Ws,p(�,R).

Lemma 6.5 R�[d
S1 ] maps Ws,p(�,R) into [0,∞) (i.e., does

not attain the value +∞).

Proof Let u ∈ Ws,p(�,R). Then by Lemma 6.4 we have
that �(u) ∈ Ws,p(�, S

1). Therefore, from Lemma 6.3 and
Proposition 2.13 item (ii) it follows thatR[d

S1 ](�(u)) < ∞.

Hence, by definition, R�[d
S1 ](u) < ∞. �
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6.2 Setting of Numerical Examples

In all numerical examples presented, we use a simplified
setting with

M1 = M2 =: M, K1 = K2 =: S
1,

p1 = p2 =: p, k = N , l = 1,

�1 = �2 =: �when considering image denoising,�1 = �,
�2 = � \ D when considering image inpainting, and

W (�, S
1) = Ws,p(�, S

1).

As a particular mollifier, we use ρε (see Example 2.2),
which is defined via the one-dimensional normal distribu-
tion ρ̂(x) = 1√

π
e−x2 .

Regularization Functionals

Let R[d
S1 ] and R�[d

S1 ] be as defined in Eqs. 6.3 and 6.4,
respectively. In what follows, we consider the following reg-
ularization functional

Fvδ

α [dS1 ](w) :=
∫

�

dp
S1

(F(w)(x), vδ(x)) dx + αR[d
S1 ](w),

(6.5)

on Ws,p(�, S
1) and the lifted variant

F̃vδ

α [dS1 ](u):=
∫

�

dp
S1

(F(�(u))(x), vδ(x)) dx+αR�[d
S1 ](u)

(6.6)

over the space Ws,p(�,R) (as in Sect. 6.1), where � is
defined as in (6.1). Note that F̃ = F ◦ �.

Lemma 6.6 Let ∅ �= � ⊂ R orR2 be a bounded and simply
connected open set with Lipschitz boundary. Let 1 < p < ∞
and s ∈ (0, 1). If N = 2 assume that sp < 1 or sp ≥ 2.
Moreover, let Assumption 3.2 and Assumption 2.10 be satis-

fied. Then the mapping F̃vδ

α [dS1 ] : Ws,p(�,R) → [0,∞)

attains a minimizer.

Proof Let u ∈ Ws,p(�,R). Then by Lemma 6.4 we have
that w := �(u) ∈ Ws,p(�, S

1). As arguing as in the proof

of Lemma 6.5, we see that F̃vδ

α [dS1 ](u) < ∞.
Since we assume that Assumption 3.2 is satisfied, we get

that Fvδ

α [dS1 ](w) attains a minimizer w∗ ∈ Ws,p(�, S
1). It

follows from Lemma 6.1 that there exists a function u∗ ∈
Ws,p(�,R) that can be lifted tow∗, i.e.,w∗ = �(u∗). Then
u∗ is a minimizer of (6.6) by definition of F̃ and �. �

6.3 Numerical Minimization

In our concrete examples, we will consider two different
operators F. For numerical minimization we consider the
functional from Eq. 6.6 in a discretized setting. For this
purpose, we approximate the functions u ∈ Ws,p(�,R),
0 < s < 1, 1 < p < ∞ by quadratic B-spline functions
and optimize with respect to the coefficients. We remark that
this approximation is continuous and thus that sharp edges
correspond to very steep slopes.

The noisy data uδ are obtained by adding Gaussian white
noisewith varianceσ 2 to the approximation or the discretized
approximation of u.

We apply a simple Gradient Descent scheme with fixed
step length implemented in MATLAB.

6.4 Denoising of S
1-Valued Functions: The InSAR

Problem

In this case the operator F : Ws,p(�, S
1) → L p(�, S

1)

is the inclusion operator. It is norm-coercive in the sense
of Eq. 3.4 and hence Assumption 3.2 is fulfilled. For ∅ �=
� ⊂ R or R2 a bounded and simply connected open set,
1 < p < ∞ and s ∈ (0, 1) such that additionally sp < 1 or
sp ≥ 2 if N = 2 we can apply Lemma 6.6 which ensures

that the lifted functional F̃vδ

α [dS1 ] : Ws,p(�,R) → [0,∞)

attains a minimizer u ∈ Ws,p(�,R).
In the examples we will just consider the continuous

approximation again denoted by u.

One-Dimensional Test Case

Let � = (0, 1) and consider the signal u : � → [0, 2π)

representing the angle of a cyclic signal.
For the discrete approximation shown in Fig. 2a, the

domain � is sampled equally at 100 points. u is affected
by an additive white Gaussian noise with σ = 0.1 to obtain
the noisy signal which is colored in blue in Fig. 2a.

In this experimentwe show the influence of the parameters
s and p. In all cases the choice of the regularization parameter
α is 0.19 and ε = 0.01.

The red signal in Fig. 2b is obtained by choosing s =
0.1 and p = 1.1. We see that the periodicity of the signal
is handled correctly and that there is nearly no staircasing.
In Fig. 2c the parameter s is changed from 0.1 to 0.6. The
value of the parameter p stays fixed. Increasing of s leads the
signal to be more smooth. We can observe an even stronger
similar effect when increasing p (here from 1.1 to 2) and
letting s fixed, see Fig. 2d. This fits the expectation since
s only appears once in the denominator of the regularizer.
At a jump, increasing of s leads thus to an increasing of the
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(a) (b)

(c) (d)

Fig. 2 Function on S
1 represented in [0, 2π): Left to right, top to bottom: original data (black) and noisy data (blue) with 100 data points. Denoised

data (red) where we chose s = 0.1, p = 1.1, α = 0.19. Denoised data with s = 0.6, p = 1.1, α = 0.19 resp. s = 0.1, p = 2, α = 0.19 (Color
figure online)

(a) (b) (c)

Fig. 3 Left to right: original data (black) and noisy data (blue) sampled at 100 data points. Denoised data (red) where we chose s = 0.9, p =
1.01, α = 0.03. Denoised data with s = 0.001, p = 2, α = 0.9 (Color figure online)

regularization term. The parameter p appears twice in the
regularizer. Huge jumps are hence weighted even more.

In Fig. 3a we considered a simple signal with a single
huge jump. Again it is described by the angular value. We
proceeded as above to obtain the approximated discrete orig-
inal data (black) and noisy signal with σ = 0.1 (blue). We
chose again ε = 0.01.

As we have seen above, increasing of s leads to a more
smooth signal. This effect can be compensated by choosing

a rather small value of p, i.e., p ≈ 1. In Fig. 3b the value of
s is 0.9. We see that it is still possible to reconstruct jumps
by choosing, e.g., p = 1.01.

Moreover, we have seen that increasing of p leads to an
even more smooth signal. In Fig. 3c we choose a quite large
value of p, p = 2 and a rather small value of s, s = 0.001.
Even for this very simple signal, it was not possible to get
sharp edges. This is due to the fact that the parameter p
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Fig. 4 The function u evaluated on the discrete grid

(but not s) additionally weights the height of jumps in the
regularizing term.

Denoising of a S
1-Valued Image

Our next example concerned a two-dimensional S
1-valued

image represented by the corresponding angular values. We
remark that in this case where N = 2 the existence of such a
representation is always guaranteed in the cases where sp <

1 or sp ≥ 2, see Lemma 6.1.
The domain � is sampled into 60 × 60 data points and

can be considered as discrete grid, {1, . . . , 60}×{1, . . . , 60}.
The B-spline approximation evaluated at that grid is given by

u(i, j) = u(i, 0) := 4π
i

60
mod 2π, i, j ∈ {1, . . . , 60}.

The function u is shown in Fig. 4. We used the hsv colormap
provided in MATLAB transferred to the interval [0, 2π ].

This experiment shows the difference of our regularizer
respecting the periodicity of the data in contrast to the classi-
cal total variation regularizer. The classical TVminimization
is solved using a fixed point iteration ([45]); for the method
see also [60].

(a) (b)

(c) (d)

Fig. 5 Left to right, top to bottom: original and noisy data of an 60 × 60 image. TV-denoised data using a fixed point iteration method. Denoised
data where we chose s = 0.9, p = 1.1, α = 1, 400 steps
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(a) (b) (c)

(d) (e)

Fig. 6 Left to right, top to bottom: original RGB image and its hue component. Noisy hue data with σ 2 = 0.001. TV minimization is done using
an iterative approach. It is serving as starting point for the GD minimization. Denoised data with s = 0.49, p = 2, α = 2, 500 steps

In Fig. 5a the function u can be seen from the top, i.e.,
the axes correspond to the i resp. j axis in Fig. 4. The noisy
data are obtained by adding white Gaussian noise with σ =√
0.001using the built-in functionimnoise inMATLAB. It

is shown in Fig. 5b. We choose as parameters s = 0.9, p =
1.1, α = 1, and ε = 0.01. We observe significant noise
reduction in both cases. However, only in Fig. 5d the color
transitions are handled correctly. This is due to the fact that
our regularizer respects the periodicity, i.e., for the functional
there is no jump in Fig. 4 since 0 and 2π are identified.
Using the classical TV regularizer, the values 0 and 2π are
not identified and have a distance of 2π . Hence, in the TV-
denoised image there is a sharp edge in the middle of the
image, see Fig. 5c.

Hue Denoising

The HSV color space is shorthand for Hue, Saturation, Value
(of brightness). The hue value of a color image is S

1-valued,
while saturation and value of brightness are real-valued.
Representing colors in this space better match the human
perception than representing colors in the RGB space.

In Fig. 6a we see a part of size 70× 70 of the RGB image
“fruits” (https://homepages.cae.wisc.edu/~ece533/images/).

The corresponding hue data are shown in Fig. 6b, where
we used again the colormap HSV, cf. Fig. 4. Each pixel
value lies, after transformation, in the interval [0, 2π) and
represents the angular value. Gaussian white noise with
σ = √

0.001 is added to obtain a noisy image, see Fig. 6c.
To obtain the denoised image, in Fig. 6d we again used

the same fixed point iteration, cf. [45], as before.
We see that the denoised image suffers from artifacts due

to the non-consideration of periodicity. The pixel values in
the middle of the apple (the red object in the original image)
are close to 2π while those close to the border are nearly 0,
meaning they have a distance of around 2π .

We use this TV-denoised image as starting image to
perform the minimization of our energy functional. As
parameters we choose s = 0.49, p = 2, α = 2, ε = 0.006.

Since the cyclic structure is respected, the disturbing arti-
facts in image in Fig. 6d are removed correctly. The edges
are smoothed due to the high value of p, see Fig. 6e.

6.5 S
1-Valued Image Inpainting

In this case the operator F : Ws,p(�, S
1) → L p(�, S

1) is
the inpainting operator, i.e.,

F(w) = χ�\D(w),
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(a) (b) (c)

(d) (e)

(f) (g) (h)

(i) (j)

Fig. 7 Left to right. Top to bottom: original image and the noisy data
with σ 2 = 0.001. Noisy image with masking filter and denoised data
with s = 0.3, p = 1.01, α = 0.3, 6000 steps. TV-denoised data. Orig-

inal image and the noisy data with σ 2 = 0.001. Noisy image with
masking filter and denoised data with s = 0.4, p = 1.01, α = 0.4,
10000 steps. TV-denoised image
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(a) (b)

(c) (d)

Fig. 8 Left to right, top to bottom: original image and image with masked region. Reconstructed image with parameters p = 1.1, s = 0.1, α = 2
and ε = 0.006, 2000 steps. TV-reconstructed image

where D ⊆ � is the area to be inpainted.
We consider the functional

Fvδ

α [d
S1 ](w) :=

∫

�\D
dp
S1

(w(x), vδ(x)) dx

+α

∫

�×�

dp
S1

(w(x), w(y))

‖x − y‖2+ps
R2

ρε(x − y) d(x, y),

on Ws,p(�, S
1).

According to Example 3.10, the functional F is coercive
and Assumption 3.2 is satisfied. For ∅ �= � ⊂ R or R2

a bounded and simply connected open set, 1 < p < ∞
and s ∈ (0, 1) such that additionally sp < 1 or sp ≥ 2
if N = 2 Lemma 6.6 applies which ensures that there
exists a minimizer u ∈ Ws,p(�,R) of the lifted functional

F̃vδ

α [dS1 ] : Ws,p(�,R) → [0,∞) u ∈ Ws,p(�,R)

Inpainting of a S
1-Valued Image

As a first inpainting test example, we consider two S
1-valued

images of size 28× 28, see Fig. 7, represented by its angular
values. In both cases the ground truth can be seen in Fig. 7a,
f. We added Gaussian white noise with σ = √

0.001 using

theMATLABbuild-in functionimnoise. The noisy images
can be seen in Fig. 7b, g. The region D consists of the nine
red squares in Fig. 7c, h.

The reconstructed data are shown in Fig. 7d, i.
For the two-colored image, we used as parameters

α = s = 0.3, p = 1.01 and ε = 0.05. We see
that the reconstructed edge appears sharp. The unknown
squares, which are completely surrounded by one color,
are inpainted perfectly. The blue and green color changed
slightly.

As parameters for the three-colored image, we used α =
s = 0.4, p = 1.01 and ε = 0.05. Here again the unknown
regions lying entirely in one color are inpainted perfectly.
The edges are preserved. Just the corner in the middle of the
image is slightly smoothed.

In Fig. 7e, j the TV-reconstructed data are shown. The
underlying algorithm ([31]) uses the split Bregman method
(see [36]).

In Fig. 7e the edge is not completely sharp. There are
some lighter parts on the blue side. This can be caused
by the fact that the unknown domain in this area is not
exactly symmetric with respect to the edge. This is also
the case in Fig. 7j where we observe the same effect.

123



Journal of Mathematical Imaging and Vision

Unknown squares lying entirely in one color are perfectly
inpainted.

Hue Inpainting

As a last example, we consider again the hue component of
the image “fruits”, see Fig. 8a. The unknown region D is
the string 01.01 which is shown in Fig. 8b. As parameters
we choose p = 1.1, s = 0.1, α = 2 and ε = 0.006. We
get the reconstructed image shown in Fig. 8c. The edges
are preserved and the unknown area is restored quite well.
This can be also observed in the TV-reconstructed image in
Fig. 8d, using again the split Bregman method as before, cf.
[31].

6.6 Conclusion

In this paper we developed a functional for regularization
of functions with values in a set of vectors. The regulariza-
tion functional is a derivative-free, nonlocal term, which is
based on a characterization of Sobolev spaces of intensity
data derived by Bourgain, Brézis, Mironescu and Dávila.
Our objective has been to extend their double integral func-
tionals in a natural way to functions with values in a set of
vectors, in particular functions with values on an embedded
manifold. These new integral representations are used for
regularization on a subset of the (fractional) Sobolev space
Ws,p(�,RM ) and the space BV (�,RM ), respectively. We
presented numerical results for denoising of artificial InSAR
data as well as an example of inpainting. Moreover, several
conjectures are at hand on relations between double metric
integral regularization functionals and single integral repre-
sentations.
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