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Abstract: We consider the Einstein flow on a product manifold with one factor being
a compact quotient of 3-dimensional hyperbolic space without boundary and the other
factor being a flat torus of fixed arbitrary dimension. We consider initial data symmetric
with respect to the toroidal directions. We obtain effective Einsteinian field equations
coupled to awavemap type and aMaxwell type equation by theKaluza–Klein reduction.
The Milne universe solves those field equations when the additional parts arising from
the toroidal dimensions are chosen constant. We prove future stability of the Milne
universe within this class of spacetimes, which establishes stability of a large class of
cosmological Kaluza–Klein vacua. A crucial part of the proof is the implementation of
a new gauge for Maxwell-type equations in the cosmological context, which we refer to
as slice-adapted gauge.

1. Introduction

1.1. Kaluza–Klein spacetimes. The classical approach to unificationof general relativity
with electromagnetism and more generally with gauge fields goes back to the original
works of Kaluza and Klein. The Kaluza–Klein approach considers general relativity in
4+n dimensions with spacetime factorizing as

M (4+q) = M (4) × B, (1.1)

where M (4) corresponds to themacroscopic spacetime and B is a compact q-dimensional
Riemannian manifold referred to as internal space. The latter models compactified di-
mensions practically invisible to observers.

Identifying the ground state of Kaluza–Klein theory has been a long-standing open
problem, which may be considered in different contexts. The terminology ground state
here refers to a stable fixed point of the Einstein flow. Original works show semiclassical
instabilities in the case M (4) is equipped with the Minkowski metric [Wi]. If results on
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the Einstein–Maxwell system [BZ,Sp], which relate to the special case B = S1 and M (4)

being equipped with the Minkowski metric, are excluded, then mathematically rigorous
nonlinear stability or instability of Kaluza–Klein spacetimes in the context of classical
general relativitywas unknownuntil recently. In a recentworkWyatt established stability
of Kaluza–Klein spacetimes for the class of models, where M (4) carries the Minkowski
metric and B is a flat q-dimensional torus [Wy],

gK K = ηM(4) + gflat,Tq . (1.2)

In the class of Kaluza–Klein spacetimes, the vacuum Einstein equations on M (4+q) re-
duce to an Einstein-wave map–Maxwell type system on M (4), which is shown to have
theMinkowski metric as its stable ground state. From the perspective of classical general
relativity this result justifies the interpretation of the corresponding higher-dimensional
Kaluza–Klein background spacetime (M (4+q), gK K ) as the ground state of the general-
ized higher dimensional field equations.

1.2. Cosmological spacetimes. A prerequisite for the stability analysis of the class of
Kaluza–Klein spacetimes with Minkowski space as their macroscopic part is the cor-
responding nonlinear stability result for the classical 4-dimensional vacuum Einstein
equations [CK,LR]. In the class of asymptotically flat spacetimes Minkowski spacetime
is the only solution known to be stable. The analogous problem for the Kerr family is
still open. There is only one other spacetime in the class of solutions of the Einstein
equations with vanishing cosmological constant that is known to be stable, which is the
Milne model. This solution belongs to the class of cosmological spacetimes, i.e. it has
spatial slices with compact topology that carry a negative Einstein metric γ . The Milne
model is future complete and past incomplete and its future nonlinear stability problem
has been resolved in the vacuum setting by Andersson and Moncrief [AMb]. This result
covers also the higher-dimensional case, however, not in the sense of compactified di-
mensions. In analogy to the asymptotically flat case we ask for the natural ground state
for Kaluza–Klein theory in the class of cosmological spacetimes. It will be shown in
this paper that the generalized Kaluza–Klein spacetime arising from the Milne model,
reading

−dt2 +
t2

9
γ + gflat,Tq , (1.3)

is future nonlinearly stable for perturbations that are invariant under the isometry group
of gflat,Tq . In the following, we call this invariance just Tq -invariance.

1.3. Main theorem.

1.3.1. Result. We first state a rough version of our main result. A detailed version will
be given later in Theorem 7.1. The Sobolev norms used in the statement are defined with
respect to the metric γ .

Theorem 1.1. Let (M, γ ) be a compact, negative, 3-dimensional Einstein manifold with-
out boundary and Einstein constant μ = − 2

9 and gflat,Tq a flat metric on T
q . Then there

exists an ε > 0 such that for Tq-invariant initial data (g, k) on M × T
q satisfying

∥
∥g − (γ + gflat,Tq )

∥
∥

H4 + ‖k − (1/9 · γ + 0)‖H3 < ε (1.4)
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the corresponding maximal globally hyperbolic development under the Einstein vacuum
equation is Tq-invariant (hence a Kaluza–Klein spacetime), future-global in time and
future complete. Moreover, there exists a foliation of the spacetime by almost CMC
hypersurfaces such that the induced metric gt , t ∈ [1,∞) converges in H4 × H3 after
a natural rescaling to a product metric c · γ + g′

flat,Tq where c is a constant close to 1
and g′

flat,Tq is a flat metric on T
q which is close to gflat,Tq .

We formulate the detailed version of the main result in terms of rescaled variables,
adapted to the evolution. At first the symmetry assumption reduces Einstein’s equation
to a system of Einstein equations in 3+1 dimension coupled to aMaxwell-type equation
and to a wave map type equation. To obtain the final reduced equations two rescalings
are performed. The first is a conformal rescaling necessary to avoid regularity problems
arising from the Kaluza–Klein reduction. The second rescaling uses the CMC-time
function to obtain variables which are scale free and independent of the expansion.
By using the CMC-time function, the conformal metric admits a foliation by CMC
hypersurfaces. These hypersurfaces are not CMC anymore with respect to the physical
metric but almost CMC which justifies the corresponding sentence in the main theorem.

The detailed reduced system is given in (3.13)–(3.18). We consider initial data sets
consisting of a Riemannian metric g on M , the trace-free part � of the second funda-
mental form restricted to M , an R

q -valued one-form A (corresponding to the mixed
terms of the metric on the product M × T

q ) and its time derivative Ȧ as well as set of
wave-type maps � (which is formally a map � : M → GL(q,R) corresponding to a
flat metric onTq ) and their time derivatives �̇ fulfilling the reduced constraint equations
(3.13)–(3.14).

Remark 1.2. The one-form A is coupled to the full system via a Maxwell-type equation
(see (3.9) below). To obtain a suitable solution theory for this equation,we need to impose
a gauge condition, e.g. the Lorentz gauge, which turns (3.9) into a hyperbolic equation.
In the main theorem, we have imposed the Lorentz gauge and the initial data (A, Ȧ)

is meant as initial data with respect to this hyperbolic equation. However, to control
the long-time behaviour of (3.9), a different gauge turned out to be more suitable, see
Sect. 1.3.2 below.

Remark 1.3. The Kaluza–Klein reduced Einstein equations restrict all possible pertur-
bations of the background to those which preserve the isometry group of the flat torus.
This, however, still allows that at each point in the macroscopic space the torus (which
is the internal space at this point) may evolve within the class of flat tori.

Remark 1.4. By the conformal rescaling we perform in Sect. 3.2 of this paper, the Rie-

mannian metrics ḡ of the spatial hypersurfaces satisfy τ 2 ḡ → det(�∞)− 1
2 γ as τ → 0.

Here, τ represents the mean curvature of the hypersurfaces. Moreover, as �∞ is con-
stant, this limit metric is also negative Einstein but with a possible different Einstein
constant. It is interesting to note that the macroscopic geometry encoded in ḡ is affected
by the geometry of the internal space through the above rescaling.

Remark 1.5. Our main result can also be applied to the stability analysis of classical
vacua in string theory since toroidal compactifications are often employed as toy models
here. [Po05, Chapter 8].

Remark 1.6. In order to connect the present result to the existing literature we would like
to point that another stability result for the Einstein flow (with positive cosmological
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constant) holds for thedeSitter solution and corresponding counterpartswith other spatial
topologies [Ri]. The same analysis could also be performed in the context of compactified
dimensions. However, themain difference between theMilnemodel considered here and
deSitter space lies in the fact that the presence of a positive cosmological constant causes
an accelerated expansion while the Milne model and perturbations of it only experience
linear expansion. In consequence, as shown in [Ri], the analysis of the stability of deSitter
space localizes in space and the topology of the spatial slices becomes irrelevant in the
analysis (as long as a suitable background solutions exists). This effect is not present
in the case of the Milne universe, which makes the particular approach by Andersson
and Moncrief [AMb] necessary. For more details in this regard we refer to [VK] for a
presentation of the respective conformal structures.

We comment in the following on some technical aspects of the stability proof.

1.3.2. Gauging Kaluza–Klein fields: the slice-adapted gauge. A standard gauge for a
vector potential that is used to consider Maxwell-type equations is the Lorentz gauge
∇μ Aμ = 0. One obtains a nonlinear wave equation of second order on A. However,
it turns out to be surprisingly difficult to analyze this equation in the present context
and to construct a natural energy which yields optimal bounds for the decay of the
perturbation. A source of this difficulty may arise from the fact that the vector potential
A is not determined by the Lorentz gauge as this gauge is preserved by transformations
A �→ A + d f if � f = 0 and thus has infinitely many degrees of freedom. To overcome
this problem, we choose a gauge which is adapted to a foliation of the spacetime by
spacelike hypersurfaces and which uniquely determines A: We demand that the spatial
components of A, ω, associated to this foliation are divergence-free and orthogonal to
the kernel of the Hodge Laplacian and that the time component of A, 	, regarded as a
function of the spacetime has vanishing integral on each spatial slice

divgω = 0, ω ⊥ ker(
H ),

ˆ
M

	dVg = 0. (1.5)

In this gauge, theMaxwell equation is awave equation on the spatial part of A coupled
to an elliptic equation for its time component. Details are provided in Lemma 5.4 and
Proposition 5.5. To the best of our knowledge, such a gauge has not been used in the
context of related problems so far. However, the slice-adapted gauge can be applied to
Maxwell-type equations on other spacetimes with compact spatial hypersurfaces (e.g.
on the deSitter space).

Recently, several gauges for the analysis of the Einstein equations were introduced,
which are of elliptic or parabolic nature [RS18a,RS18b]. We would like to point out that
the latter do not have any relation to the slice-adapted gauge which we introduce in this
paper.

1.3.3. Regularity aspects and the momentum constraint. Another interesting aspect of
the Kaluza–Klein reduced system is the fact that the momentum constraint, which is
not explicitly used in controlling the perturbation in the pure 3 + 1-dimensional vacuum
stability proof, does play an important role in the present problem in the following sense.
Below, we will use energies that control the H4-norm of an evolving metric g (in terms
of a fixed background metric) and the H3-norm of the tracefree part � of the second
fundamental form. However, when differentiating the energies for the perturbation of the
fields generated by the internal space, one obtains 4 derivatives of � and 3 derivatives
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of its time derivative. Those in turn can not be controlled by the H3-norm of � and
the H2-norm of its time derivative, respectively. A closer analysis however reveals that
these terms only appear as third derivatives of divg� and second derivatives of ∂T divg�.
Replacing those terms using the momentum constraint improves the regularity by one
order and closes the estimate.

1.4. Related systems. Theorem 1 has some immediate consequences for related sys-
tems and in particular automatically implies the following results.

1.4.1. Einstein–Maxwell–Dilaton system. In the special case of B = T
q = S1 the

5-dimensional U (1)-symmetric vacuum field equations with S1 being the symmetry
direction reduce to the 4-dimensional Einstein–Maxwell–Dilaton system [OW]. This
implies in particular the following corollary.

Corollary 1.7. The Milne model is future stable as a trivial solution to the Einstein–
Maxwell–Dilaton system.

We use the terminology trivial solution in the sense that it is actually a solution to the
Einstein vacuum equations.

In the case that the field � is given by the identity map its equation of motion is
trivially satisfied and does not contain any geometric information. In this setup we obtain
a new system that is formally equivalent to the classical Einstein–Maxwell system. This
implies

Corollary 1.8. The Milne model is future stable as a trivial solution to the Einstein–
Maxwell system.

1.4.2. Brans–Dicke theory. Another well-known system that is captured by our main
result is the Brans–Dicke model of general relativity. This system is obtained by setting
the one-forms A to zero. The Brans–Dicke model couples pure gravitation with a scalar
field in which the value of the scalar field can be interpreted as a dynamical version of
Newton’s gravitational constant, see [OW] for more details.

Corollary 1.9. The Milne model is future stable as a trivial solution to the Brans–Dicke
model.

1.4.3. U(1)-symmetric spacetimes. There is a third relation of Theorem 1.1 with previ-
ously considered models, where in this specific case the present result can be considered
as a higher-dimensional analog. In their work on the stability of certain Bianchi type-III
models Choquet-Bruhat and Moncrief consider spatial topologies of the form � × S1,
where � is a closed two-dimensional higher genus surface [CM]. The background so-
lution being investigated is −4dt2 + 2t2σ� + dx2, where σ� is a metric of constant
negative scalar curvature on �. They prove future stability of this solution considered
within the set of solutions to the 4-dimensional vacuum Einstein equations obeying a
U (1)-symmetry in the S1 direction. By a Kaluza–Klein reduction this symmetric sys-
tem is equivalent to the 2 + 1-dimensional Einstein equations on R × � with a source
term given by a massless scalar field. In a way this can be seen as an analogue to the
problem considered in the present work, where the Kaluza–Klein fields are replaced by
a single massless scalar field. However, the approach of Choquet-Bruhat and Moncrief
does not carry over to higher dimensions as it relies on the particular features of the
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2 + 1-dimensional geometric setting. Those are for instance the existence of a monotone
L2-energy and the usability of the momentum constraint to control the trace-free part
of the second fundamental form. In 3 + 1-dimensions these methods are not available
and need to be replaced by the energies provided by Andersson–Moncrief [AMb]. Nev-
ertheless, the structure of a torus bundle over a negatively curved compact Riemannian
manifold is present in both cases. The result in this paper implies that those geometries
are stable under the Einstein flow irrespective of the low dimensional features used in
[CM].

1.4.4. Higher-dimensional backgrounds. Finally, we mention that by the methods used
in this paper, one can also prove nonlinear stability of a higher-dimensional Kaluza–
Klein Milne model

−dt2 +
t2

m2 γ + gflat,Tq (1.6)

under the same class of perturbations. Here, γ is a negative Einstein metric with Einstein
constant −(m − 1)/m2 on a compact m-dimensional manifold. In higher dimensions,
the conformal behaviour of the Maxwell-type equation yields a faster decay of Fμν and
improves the energy estimates.

1.5. Organization of the paper. This paper is organized as follows. In Sect. 2 notations
are introduced as well as the rescaling of themacroscopic geometry and several auxiliary
quantities. In Sect. 3 we perform the Kaluza–Klein reduction and derive the reduced
Einstein-wave map–Maxwell system. In Sect. 4 we compute the energy-momentum
tensor in the reduced Einstein equations in terms of the fields generated by the internal
space and introduce norms to estimate them. Section 5 derives energy estimates for all
evolution equations individually and thereby constitutes the core step of the stability
analysis. Section 6 presents the elliptic estimates for the macroscopic lapse function
and the shift vector field. Section 7 presents the proof of the main theorem and Sect. 8
presents all related systems listed above for which our stability analysis of the Milne
model applies.

2. Preliminaries

2.1. Notation. Throughout this paper, M is a compact manifold eventually equipped
with different Riemannian metrics and I ⊂ R is an open interval. In this paper, the
appearing Lorentzian metrics on M̃ = I × M will be denoted by h, and the associated
covariant derivative will be denoted by ∇. The wave operator associated to h is defined
with the sign convention such that � = trh∇2. In this paper, we will sometimes also
denote Lorentzian metrics by h̃, h̄, ĥ and the associated covariant derivatives and wave
operators will be denoted by ∇̃,∇, ∇̂ and �̃,� and �̂, respectively. Riemannian metrics
on M will be denoted by g, g̃ and the associated covariant derivatives will be denoted
by D, D̃, respectively. The Laplacian of g is defined as 
 = trg D2 and the volume
form will be denoted by dVg . The exterior derivative acting on differential forms on M
is denoted by d and the formal adjoint with respect to g is d∗. The Hodge-Laplacian
acting on differential forms is then 
H = d∗d + dd∗. The Lie-derivative of a tensor
T in the direction of a vector field X will be denoted by LX T . Throughout this paper,
Greek indices α, β, γ, . . .will denote spacetime coordinates on I × M and Latin indices
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i, j, k, . . .will denote coordinates on M . The coordinates on the torusTq will be denoted
by m, n, p, . . .. The index 0 will either refer to a time coordinate or to a timelike vector
field. Its meaning will be clarified in the subsection where it is used.

2.2. The macroscopic spatial background geometry. In what follows we consider M
equipped with a negative Riemannian Einstein metric γ with Ric[γ ] = − 2

9γ fixed once
and for all. The Einstein operator 
E associated with γ acting on symmetric 2-tensors,

E ≡ −
 − 2R̊, has trivial kernel, i.e. ker
E = {0}. This fact is relevant for the
features of the natural energy associated with 
E . This has been discussed in [AF17]
and is mentioned here for the sake of completeness.

2.3. Geometric formalism for the evolving spacetime. In the following sections, we
will study the evolution of a 3+1-dimensional Lorentzian metric h̃ (more precisely of
its rescaled version h introduced below). For this purpose, we will now introduce some
geometric quantities that will be used throughout the paper. In the ADM formalism, h̃
is written as

h̃ = −Ñ 2dτ 2 + g̃i j (dxi + X̃ i dτ) ⊗ (dx j + X̃ j dτ), τ ∈ (−∞, 0) (2.1)

and the tracefree part of the second fundamental form of the hypersurfaces {τ = const}
is denoted by �̃. Here we assume that these hypersurfaces all have constant mean
curvature and that the mean curvature of {τ = const} is τ . We define rescaled quantities
g, N , �, X by

gi j = τ 2 g̃i j , N = τ 2 Ñ , �i j = τ�̃i j , Xi = τ X̃ i (2.2)

and a rescaled time T via

τ = τ0 · e−T , T ∈ (−∞,∞), τ0 < 0 is fixed. (2.3)

It is easily seen that with respect to this new time coordinate, the above Lorentzianmetric
is given by

h̃ = (τ0)
−2e2T (−N 2dT 2 + gi j (dxi − Xi dT ) ⊗ (dx j − X j dT )) =: (τ0)

−2e2T · h.

(2.4)

Let � be the second fundamental form of the slice {T ≡ const} with respect to the
Lorentzian metric h. Then one can show that

� = −� + N−1(1 − N/3)g. (2.5)

The future-directed timelike unit normal of the hypersurfaces {T ≡ const} with respect
to h is

e0 = N−1(∂T + X). (2.6)

We use e0 to split 1-forms on M̃ described in the following. For A ∈ �1(M̃), we define
a function	 ∈ C∞(M̃) and a time-dependent family of one-forms ω ∈ C∞(I,�1(M))

by 	 := A(e0) and ω(∂i ) = A(∂i ). Throughout the paper, we will view any ω ∈
C∞(I,�1(M)) as an element in �1(M̃) by demanding ω(e0) = 0. This allows us to
write the above splitting as A = ω + 	e∗

0 where e∗
0 ∈ �1(M̃) is the dual of e0. We
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compute the connection coefficients for the rescaled Lorentzian metric h. Using the
Koszul formula, one shows

�(h)000 = �(h)0i0 = 0, �(h)i
00 = gi j N−1∂ j N , �(h)0i j = −�i j ,

�(h)
j
i0 = −g jl�li , �(h)k

i j = �(g)k
i j ,

(2.7)

where i, j, k are coordinates on M and the index 0 refers to the vector field e0 given in
(2.6). The following lemma is technically relevant for computations performed further
below.

Lemma 2.1. We have

Le0g = −2�,

[Le0 , divg]η = 2〈�, Dη〉 + 〈D log N ,Le0η〉 + 〈S, η〉 + 2〈�, D log N ⊗ η〉
− trg�〈D log N , η〉,

[Le0 ,
g] f = 2〈�, D2 f 〉 + 〈D log N , D∂e0 f 〉 + 〈S, D f 〉
+ 2〈�, D log N ⊗ D f 〉 − trg�〈D log N , D f 〉

for all f ∈ C∞(M̃) and η ∈ C∞(I,�1(M)). Here, S = 2divg� − Dtrg�.

Proof. At first, we compute

Le0g = LN−1(∂T +X)g = N−1L(∂T +X)g = −2�. (2.8)

Let {∂1, ∂2, ∂3} be local coordinate fields on M such that D∂i ∂ j = 0 at some fixed point p
andwith respect to a fixedmetric gt0 .We then extend these local vector fields to elements
inC∞(I,X(M)) by defining ∂i (t) = ϕ∗

t ∂i (t0), where ϕt ∈ Diff(M) is generated by−X .
Then by construction, [∂T +X, ∂i ] = 0 and therefore, [e0, ∂i ] = ∂i N

N e0. Then at the point
(t, p), we compute

∂e0�
k
i j = 1

2
gkl∂e0(∂i g jl + ∂ j gil − ∂l gi j )

= 1

2
gkl(∂i∂e0g jl + ∂ j∂e0gil − ∂l∂e0gi j )

+
1

2
gkl([e0, ∂i ]g jl + [e0, ∂ j ]gil − [e0, ∂l ]gi j )

= 1

2
gkl(∂i (Le0g) jl + ∂ j (Le0g)il − ∂l(Le0g)i j )

+
1

2
gkl(

∂i N

N
∂e0g jl +

∂ j N

N
∂e0gil − ∂l N

N
∂e0gi j )

= 1

2
gkl(Di (Le0g) jl + D j (Le0g)il − Dl(Le0g)i j )

+
1

2
gkl(

∂i N

N
Le0g jl +

∂ j N

N
Le0gil − ∂l N

N
Le0gi j ). (2.9)
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Therefore, we obtain

Le0(divgη) − divg(Le0η) = (∂e0gi j )(∂iη j − �k
i jηk) + gi j [e0, ∂i ]ω j − gi j (∂e0�

k
i j )ηk

= 2gki gl j�kl(∂iη j − �k
i jηk) + gi j ∂i N

N
∂e0η j

+ gi j gkl(Di� jl + D j�il − Dl�i j )ηk

+ gi j gkl(
∂i N

N
� jl +

∂ j N

N
�il − ∂l N

N
�i j )ηk . (2.10)

The third formula follows from the second and the fact that [Le0 , D] f = 0. ��

3. Kaluza–Klein Reduction

In this section we perform the Kaluza–Klein reduction beginning with the physical
Lorentzian metric on the full spacetime.

3.1. Kaluza–Klein metrics. Following [CH09, p. 653] we consider the Kaluza–Klein
ansatz for the Lorentzian metric ĥ on R× M ×T

q , where q ≥ 1 denotes the dimension
of internal space,

ĥ AB θ̂ Aθ̂ B = h̄αβθαθβ + �mn(θm + Am
α θα)(θn + An

βθβ). (3.1)

Here, h̄αβ denotes a Lorentzian metric on R× M , {�mn} is a set of functions on M and
Ai

α is an R
q -valued 1-form on M . Moreover, θα and θm are suitable co-frames on M

and Tq , respectively. We obtain for the macroscopic part of the Ricci tensor (cf. [CH09,
p. 659 eq. (5.2)])

R̂αβ = Rαβ − 1

2
Fμ

m,β Fm
αμ − 1

4

(

�mq(∇2
αβ + ∇2

βα)�mq + ∇α�mq∇β�mq

)

. (3.2)

Here, {�mn}1≤m,n≤q is the inverse of the matrix {�mn}1≤m,n≤q and F is the curvature of
A given by F = d A or equivalently Fμν = ∂μ Aν − ∂ν Aμ. Imposing Einstein equations
on R̂αβ yields

Rαβ − 1

2
Rh̄αβ = 1

2
Fμ

m,β Fm
αμ +

1

4

(

�mq(∇2
αβ + ∇2

βα)�mq + ∇α�mq∇β�mq

)

− 1

2

(
1

2
Fμ

m,β Fmβ
μ +

1

2

(

�mq��mq +
1

2
∇α�mq∇β�mq

))

h̄αβ

=: T αβ [�, F]. (3.3)

In particular,T [�, F]determines thematter source terms in the effective 3+1-dimensional
Einstein equations. The remaining parts of the Einstein vacuum equation yield the equa-
tions of motion for the fields F and�, cf. [CH09, p. 659, eq. (5.3, 5.4)]. Those equations
read

1

2
∇λFλ

l,α +
1

4
Fλ

l,α�mp∇λ�np = 0, (3.4)

− 2��mn − �pq∇α�pq∇α
�mn + 2�pq∇α�mp∇α

�nq + Fm,αβ Fαβ
n = 0. (3.5)
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3.2. Conformal rescaling. From an analytical point of view the second order terms of
� on the right-hand side of (3.3) are problematic. In this section, we therefore perform
a standard conformal rescaling of the metric that yields an equivalent system that has
a better analytic structure. Let us recall some standard transformation formulas. If h̄ =
e2u h̃, we have

R̄αβ = R̃αβ − (n − 2)(∇̃2
αβu − ∇̃αu∇̃βu) − (�̃u + (n − 2)|∇̃u|2)h̃αβ,

R̄ = e−2u(R̃ − 2(n − 1)�̃u − (n − 2)(n − 1)|∇̃u|2),
∇2

αβ f = ∇̃2
αβ f − ∇̃αu∇̃β f − ∇̃βu∇̃α f + h̃λμ∇̃λu∇̃μ f h̃αβ,

� f = e−2u(�̃ f + (n − 2)h̃λμ∇̃λu∇̃μ f ),

(3.6)

where n is the dimension of the spacetime. As a conformal factor, we set

u = c · log(det�) (3.7)

with a constant c whose value is to be determined. We have

∇̃αu = c · �mn∇̃α�mn, ∇̃2
αβu = c(�mn∇̃2

αβ�mn + ∇̃α�mn∇̃β�mn), (3.8)

where we used that for a matrix A we have ∂α det A = det A tr(A−1∂α A). We now put
c = −1/4, n = 4 and the relation between the physical metric h̄ and the conformal
metric h̃ is h̄ = e2u h̃ = 1√

det�
h̃. Then for h̃, F and �, the equations read

∇̃λFλ
l,α = −1

2
Fλ

l,α�mp∇̃λ�np, (3.9)

�̃�mn = h̃μλ�pq ∇̃μ�mp∇̃λ�nq +
1

2

√
det�Fm,μλFn,γ δ h̃μγ h̃λδ (3.10)

and

R̃αβ − 1

2
R̃h̃αβ = 1

2

√
det�[Fm,μβ Fm

αλh̃μλ − 1

2
Fm,μλFm

ρν h̃μν h̃λρ h̃αβ

+
1

4
�mn Fm,μλFn,ρν h̃μρ h̃λν h̃αβ ]

− 1

4
∇̃α�mn∇̃β�mn +

1

8
�pq ∇̃α�pq�mn∇̃β�mn

+
1

4
�pq ∇̃μ�mp�

mn∇̃λ�nq h̃μλh̃αβ +
3

8
h̃μλ∇̃μ�mn∇̃λ�mnh̃αβ

− 1

16
h̃μλ�pq ∇̃μ�pq�mn∇̃λ�mnh̃αβ. (3.11)

3.3. Macroscopic Einstein equations. (3.11) are the effective macroscopic Einstein
equations. Their energy-momentum tensor, arising from the geometry of the internal
space, takes the form

T̃αβ [A,�] = 1

2

√
det�[Fm,μβ Fm

αλh̃μλ − 1

2
Fm,μλFm

ρν h̃μν h̃λρ h̃αβ

+
1

4
�mn Fm,μλFn,ρν h̃μρ h̃λν h̃αβ ]
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− 1

4
∇̃α�mn∇̃β�mn +

1

8
�pq ∇̃α�pq�mn∇̃β�mn

+
1

4
�pq ∇̃μ�mp�

mn∇̃λ�nq h̃μλh̃αβ

+
3

8
h̃μλ∇̃μ�mn∇̃λ�mnh̃αβ − 1

16
h̃μλ�pq ∇̃μ�pq�mn∇̃λ�mnh̃αβ.

Weuse in the following the standard 3+1-dimensionalADMformalism for the spacetime
metric as in (2.1), where Ñ , g̃ and X̃ are lapse, physical metric and shift vector field.
The matter quantities appearing in the ADM-Einstein equations in [Re] read

ρ̃ = Ñ 2T̃ 00, j̃i = Ñ T̃ 0
i , S̃i j = 8π(T̃i j − 1

2
g̃i j g̃

kl T̃kl) − 4πρ̃ g̃i j ,

η̃ = 4π(ρ̃ + g̃i j T̃i j ).

(3.12)

Here, 0 refers to the time-function τ .

3.4. Rescaled system. We perform now the rescaling of the macroscopic Einstein
equations according to (2.2). All symbols in the following denote the rescaled variables
as in (2.2). Then, the Einstein flow in CMCSH gauge reads

R(g) − |�|2g + 2
3 = 4τ · ρ, (3.13)

Di�i j = τ 2j j , (3.14)
(


 − 1
3

)

N = N
(

|�|2g + τ · η
)

− 1, (3.15)


Xi + Ri
j X j = 2D j N� j i − Di ( N

3 − 1
)

+ 2Nτ 2j i

−(2N� jk − D j Xk)(�i
jk − �̂i

jk), (3.16)

∂T gi j = 2N�i j + 2
( N
3 − 1

)

gi j − LX gi j , (3.17)

∂T �i j = −2�i j − N
(

Ri j − δi j + 2
9gi j

)

+ D2
i j N + 2N�ik�

k
j

− 1
3

( N
3 − 1

)

gi j − ( N
3 − 1

)

�i j − LX�i j + Nτ · Si j .

The relation between the rescaled matter quantities and the original ones is

ρ := 4πρ̃ · τ−3, η := 4π(ρ̃ + g̃i j T̃i j ) · τ−3, η := 4π g̃i j T̃i j · τ−5,

j i := 8π |τ |−5j̃ i , Si j := 8πτ−1
[

T̃i j − 1
2 g̃i j T̃

]

.
(3.18)

This set of equations is the basis for analyzing the dynamical behaviour of the perturba-
tions of the geometry of the macroscopic space.

Before going on we define our notion of smallness. In what follows we say a solution
or data is small or fulfills a smallness condition if

‖g − γ ‖H4 + ‖�‖H3 + ‖N − 3‖H5 + ‖X‖H5 + ‖� − �b‖H4 + ‖F‖H3 < ε (3.19)

for a sufficiently small ε > 0, where �b is a fixed constant map. By construction this
condition holds for the initial perturbation we consider, then by local stability of the
system, the condition holds on a finite time-interval. This justifies to make the smallness
assumption to derive the decay estimates in the sense of a standard bootstrap argument.
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4. Estimating the Energy-Momentum Tensor

In this section we evaluate the matter terms in the Einstein equations in terms of the
wave-type-map and the one-forms determining the energy-momentum tensor.We clarify
important notations prior to the computations. The index 0 corresponds to the τ time-
function in this section and we use the notation tr to compute the trace of the Lie-algebra
indices. We first compute the rescaled energy density

ρ = 4πτ−3 Ñ 2T̃ 00 = 4πτ−3 Ñ 2h̃0μh̃0ν T̃μν = 4πτ N−2(T̃00 + τ−2Xi X j T̃i j ).
(4.1)

We evaluate T00 in the following.

T̃00 = 1

2

√
det�tr(Fμ

0F0μ) − 1

4
∇̃0�

mq ∇̃0�mq +
1

8
(�mq ∇̃0�mq)(�mq ∇̃0�mq)

+

[
( − 1

4

√
det�tr(Fμ

γ Fγ
μ ) +

3

8
∇̃γ �mq ∇̃γ �mq − 1

16
(�mq ∇̃γ �mq)(�mq ∇̃γ �mq)

)

+ �mn(
1

4
�pq ∇̃λ�mp∇̃λ�nq +

1

8

√
det�(Fμν,m Fμν

n ))

]

τ−4(−N 2 + |X |2g). (4.2)

The spatial part is given by

T̃i j = 1

2

√
det�tr(Fμ

j Fiμ) − 1

4
∇̃i�

mq ∇̃ j�mq +
1

8
(�mq ∇̃i�mq)(�mq ∇̃ j�mq)

+

[
( − 1

4

√
det�tr(Fμ

γ Fγ
μ ) +

3

8
∇̃γ �mq ∇̃γ �mq − 1

16
(�mq ∇̃γ �mq)(�mq ∇̃γ �mq)

)

+ �mn(
1

4
�pq ∇̃λ�mp∇̃λ�nq +

1

8

√
det�(Fμν,m Fμν

n ))

]

τ−2gi j . (4.3)

We evaluate now the trace-part of η

g̃i j T̃i j = τ 2gi j
[1

2

√
det�tr(Fμ

j Fiμ) − 1

4
∇̃i�

mq ∇̃ j�mq +
1

8
(�mq ∇̃i�mq)(�mq ∇̃ j�mq)

]

+ 3

[
( − 1

4

√
det�tr(Fμ

γ Fγ
μ ) +

3

8
∇̃γ �mq ∇̃γ �mq − 1

16
(�mq ∇̃γ �mq)(�mq ∇̃γ �mq)

)

+ �mn(
1

4
�pq ∇̃λ�mp∇̃λ�nq +

1

8

√
det�(Fμν,m Fμν

n ))

]

. (4.4)

We evaluate the current

j j = 8π |τ |−5 Ñ T̃ 0
i g̃i j = 8πτ−2N−1gi j (−T̃0i |τ | + T̃ki Xk). (4.5)

Here, we require the off-diagonal components of the energy-momentum tensor. Those
are given below

T̃0i = 1

2

√
det�tr(Fμ

0Fiμ) − 1

4
∇̃0�

mq ∇̃i�mq +
1

8
(�mq ∇̃0�mq)(�mq ∇̃i�mq)

+

[
( − 1

4

√
det�tr(Fμ

γ Fγ
μ ) +

3

8
∇̃γ �mq ∇̃γ �mq − 1

16
(�mq ∇̃γ �mq)(�mq ∇̃γ �mq)

)

+ �mn(
1

4
�pq ∇̃λ�mp∇̃λ�nq +

1

8

√
det�(Fμν,m Fμν

n ))

]

|τ |−3Xi . (4.6)
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4.1. L2-norms of the energy-momentum tensor. When analyzing the dynamics of the
metric variables we require bounds on standard Sobolev norms of the matter variables as
listed in (3.18). Those corresponddirectly to boundson theSobolevnormsof components
of the energy-momentum tensor. We derive those bounds in the following, expressed
in terms of the corresponding norms of the matter fields F , A and �, respectively. We
define some useful norms for this purpose.

|||F |||2H� :=
∑

m

∑

k≤�

ˆ
M

(

|τ |2gi j Di1 . . . Dik (F0i,m)Di1 . . . Dik (F0 j,m)

+ gi j guv Di1 . . . Dik (Fiu,m)Di1 . . . Dik (Fjv,m)
)

dVg. (4.7)

Moreover, F is antisymmetric and the factor |τ |2 compensates a growth of the 0-
components of F relative to the pure spatial components. It needs to be determined/fixed
as soon as the decay properties of F are understood. Note that all objects and derivatives
here are defined with respect to the rescaled metric g such that there is no more intrin-
sic scaling in this energy. More precisely, this means that under the condition that the
rescaled metric remains close to the reference metric γ , this energy measures the field
F without introducing a growth resulting from the expansion as it would be the case for
the unrescaled physical metric.

Remark 4.1. Note that the tensor F is given in terms of derivatives of the 1-form A
here with respect to the dual basis (dτ, dx1, dx2, dx3). As shown in the analysis of
the asymptotic behavior of A, the coefficients of A are controlled when expressed with
respect to the basis (dT, dx1, dx2, dx3). From the comparison of the bases we obtain
that the coefficients are related via Aτ = dT

dτ
AT = −τ−1AT .

Analogously, we define for the field � a similar Sobolev norm.

|||�|||2H� :=
∑

m,n

[
∑

k≤�−1

ˆ
M

(

(Di1 . . . Dik (∂0�mn)Di1 . . . Dik (∂0�mn)
)

dVg

+
∑

k≤�

ˆ
M

τ−2
(

(Di1 . . . Dik (�mn)Di1 . . . Dik (�mn)
)

dVg

]

. (4.8)

We obtain the following estimates for the components of the energy-momentum
tensor as appearing in thematter variables. Recall, X̂ = X/N . Thenwefind the following

Lemma 4.2. Let � ≥ 3/2. Then the following estimate holds

‖T̃00‖H� + |τ |−1‖T̃0i‖H� + |τ |−2‖T̃ ‖H� + |τ |−4‖g̃i j T̃i j‖H�

≤ C(1 + ‖X̂‖2H� )
[

|||F |||2H� + |||�|||2H�

]

. (4.9)

Here, C = C(‖N‖L∞ , ‖N−1‖L∞ , ‖�‖L∞ , ‖�−1‖L∞ , ‖N‖H� ) and we denote by T̃ the
spatial part of the tensor T̃ .

Proof. The estimates follow immediately from the expansions of the energy-momentum
tensor components (4.2)–(4.4) and (4.6). ��
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Remark 4.3. Note that the constant, given that all arguments are uniformly bounded, as
we assure by suitable bootstrap assumptions, can be considered a generic constant.

Proof. We evaluate first the term, T̃00. For the first estimate we evaluate

tr
(

Fμ
0 Fμ0

) = τ 2(gi j − X̂ i X̂ j )δmn Fi0,m F0 j,n (4.10)

and then apply Sobolov embedding with � > 3/2. We evaluate next the square of F ,
which is

δmn Fμ
γ,m Fγ

μ,n = 2δmn
[

− τ 6N−2gi j Fi0,m Fj0,n + 2τ 6N−2 X̂ i X̂ j F0i,m Fjb0,n

+ τ 5(gi j − X̂ i X̂ j )N−1 X̂v
(

Fiv,m Fj0,n + Fiv,n Fj0,m
)

+
1

2
τ 4(guv − X̂u X̂v)(gi j − X̂ i X̂ j )Fiv,m Fu j,n

]

. (4.11)

The related term containing a square of F , where δmn is replaced by �mn can be
decomposed identically by replacing δ by �. For example, we consider the following
term

∇̃γ �mq ∇̃γ �mq = −τ 4
1

N 2 ∂0�
mq∂0�mq + τ 3

1

N
X̂i (∂0�

mq∂i�mq + ∂i�
mq∂0�mq)

+ τ 2(gi j − X̂ i X̂ j )∂i�
mq∂ j�mq . (4.12)

Similar decompositions hold for the other terms in the brackets on the right-hand side
of the equation for T̃00. The remaining terms in the first line of that equation can be
estimated directly. To deduce the full estimate it is sufficient to use the fact that the
regularity is high enough to use product estimates for the Sobolev norm and that every
time derivative of � and every zero-component of F appears with one additional τ

factor.
We turn now to the estimate for T̃0i . We note that the term in the big brackets is identical
to the case considered above. Since the last factor is now only a τ−3 and a shift term
we obtain the first summand in the estimate. It remains to evaluate the first line of the
evaluation of T̃0i . The terms containing derivatives of � can immediately be estimated.
We evaluate the first term containing F .

Fμ
0,m Fiμ,n = τ 3

X̂v

N
Fv0,m Fi0,n + τ 2(guv − X̂u X̂v)Fv0,m Fiu,n . (4.13)

These terms yield terms that decay like τ as contained in the estimate. We turn to the
estimate for T̃ now noting that the trace of T̃ can be treated similarly. The term in the
large brackets is unchanged and is here multiplied only with a τ−2 factor. This leaves
an overall τ 2 factor, which appears in the estimate. ��

4.2. Estimating the matter variables as appearing in the Einstein equations. The final
estimates for the rescaled matter quantities as appearing in the Einstein equations are
the following:
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Proposition 4.4. Let � ≥ 3/2, then we have

‖ρ‖H� ≤ C |τ |(1 + ‖X̂‖2H� )
[

|||F |||2H� + |||�|||2H�

]

,

‖η‖H� ≤ C |τ |(1 + ‖X̂‖2H� )
[

|||F |||2H� + |||�|||2H�

]

,

‖j‖H� ≤ C(1 + ‖X̂‖2H� )
[

|||F |||2H� + |||�|||2H�

]

,

‖S‖H� ≤ C |τ |(1 + ‖X̂‖2H� )
[

|||F |||2H� + |||�|||2H�

]

.

(4.14)

Proof. This is an immediate consequence of the foregoing lemma as well as (4.1) and
(4.5) and the definitions of η and S. ��

5. Energy Estimates

5.1. Energy estimate for the geometry. We define the energy to measure the tracefree
part of the second fundamental form and of the difference between the metric and the
background metric as in the related work [AMb]. We recall briefly some necessary
notation. The lowest eigenvalue of the Einstein operator corresponding to the specific
Einsteinmetric is denoted byλ0. For a relevant lower bound in the present case cf. [Kr15].
The correction constants α = α(λ0, δα) and cE are given by

α =
{

1 λ0 > 1/9
1 − δα λ0 = 1/9

, cE =
{

1 λ0 > 1/9
9(λ0 − ε′) λ0 = 1/9

(5.1)

with δα = √
1 − 9(λ0 − ε′), where 1 >> ε′ > 0 is a free variable to be chosen below.

The energy is defined in the following. For m ≥ 1 let

E(m) = 1

2

ˆ
M

〈6�,L m−1
g,γ 6�〉dVg +

9

2

ˆ
M

〈(g − γ ),L m
g,γ (g − γ )〉dVg,

�(m) =
ˆ

M
〈6�,L m−1

g,γ (g − γ )〉dVg.

(5.2)

The corrected energy is

Es(g − γ,�) =
∑

1≤m≤s

E(m) + cE�(m). (5.3)

Lemma 5.1. There exists a δ > 0 and a constant C > 0 such that for δ-small data
(g, �, A,�) the inequality

‖g − γ ‖2Hs + ‖�‖2Hs−1 ≤ C Es(g, �) (5.4)

holds.

Proof. This is analogous to the previous work [AMb] taking into account the triviality
of the kernel of the Einstein operator. ��

The relevant energy estimate for the corrected energy is
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Lemma 5.2. For sufficiently small Es we have

∂T Es ≤ −2αEs + 6E1/2
s |τ |‖N S‖Hs−1 + C E3/2

s

+ C E1/2
s

(

|τ |‖ρ‖Hs−1 + |τ |3‖η‖Hs−1 + |τ |2‖Nj‖Hs−2

)

. (5.5)

Proof. The proof is analogous to the one in [AF17]. ��
Substituting the norms of the matter quantities by Proposition 4.4 we obtain the

energy estimate.

Proposition 5.3. Let s ≥ 5/2 and Es be sufficiently small. Then we have

∂T Es ≤ −2αEs + C E1/2
s |τ |2

[

|||F |||2Hs−1 + |||�|||2Hs−1

]

+ C E3/2
s , (5.6)

where C = C(‖X̂‖Hs−1 , ‖N‖L∞ , ‖N−1‖L∞ , ‖N‖Hs−1).

5.2. Energy estimates for the vector potential. With respect to the Lorentzian metric
h defined in (2.4), (3.9) can be written as

hλμ∇λFμα = −1

2
hλμFλα�mp∂μ�mp. (5.7)

Here and in the rest of the subsection, we omit the index l in equation (3.9) due to
convenience.

Lemma 5.4. (Slice-adapted gauge). Let F ∈ �2(M̃) be exact. Then there exists a unique
form A ∈ �1(M̃) with d A = F such that

divgω = 0, ω ⊥ ker(
H ),

ˆ
M

	dVg = 0, (5.8)

where ω and 	 are defined in Sect. 2.3. In the statement and the proof of the lemma, d
is the exterior derivative on M̃.

Proof. Let B ∈ �1(M̃) such that d B = F . Let f ∈ C∞(M̃) with
´

M f dVg = 0 for
each T ∈ I , c ∈ C∞(I ) and η ∈ C∞(I,�1(M)) be such that η ∈ ker(
H ) for each
T ∈ I . Let

A = B + d( f + c) − η ∈ �1(M̃). (5.9)

By construction, d A = d B. Demanding the first condition of the lemmayields gi j Di B j+

g f = 0 and because

´
M gi j Di B j dVg = 0, this equation can be uniquely solved at

each time. Let ω1, . . . , ωL ∈ C∞(I,�1(M)) be for each T an L2(g)-orthonormal basis
of ker(
H ) (Note that the dimension of ker(
H ) equals the first Betti number of M .
Thus, it does not depend on g). The second gauge condition is obtained by defining

η =
L

∑

a=1

ˆ
M

〈B + d( f + c), ωa〉gdVg · ωa =
L

∑

a=1

ˆ
M

〈B, ωa〉gdVg · ωa . (5.10)

The third condition yieldsˆ
M

A(e0)dVg =
ˆ

M
(B(e0) + d f (e0)dVg + ∂T c ·

ˆ
M

N−1dVg, (5.11)

which fixes ∂T c. Uniqueness of A follows by construction. ��
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Proposition 5.5. Let F ∈ �2(M̃) be exact and assume it solves (5.7). Let A ∈ �1(M̃)

be a potential for F which satisfies the gauge conditions of Lemma 5.4 and let 	 and ω

be as in Lemma 5.4. Then we have the equations


g(	) = −divg(	 · d(log(N ))) − [Le0 , divg]ω − 1

2
gi j Fi0�

mp∂ j�mp, (5.12)

(Le0(Le0ω))k + 
H ωk

= ∂k(∂e0	) + ∂e0	
∂k N

N
+ 	 · ∂k(∂e0 log(N )) + gi j ∂i N

N
Fjk − gi j�ki F0 j

+ trg� · F0k + gi j�ik Fj0 − 1

2
F0k�

mp∂0�mp +
1

2
hi j Fik�

mp∂ j�mp. (5.13)

Proof. Using (2.7), one computes

gi j∇i Fj0 = divg(ie0 F), (5.14)

where ie0 F ∈ C∞(I,�1(M)) is given by ie0 F(∂i ) = F(∂i , e0). Moreover, by using
ω(e0) = 0, A(∂i ) = ω(∂i ) and [∂i , e0] = − ∂i N

N e0 + N−1[∂i , X ], we find

ie0 F(∂i ) = ∂i (	) +
∂i N

N
	 − Le0ω(∂i ) (5.15)

which implies

gi j∇i Fj0 = divg(ie0 F) = 
g	 + divg(	 · D(log(N ))) + [Le0 , div]ω, (5.16)

where we have used that divgω = 0. The first formula follows from (5.7). To prove the
second formula, we compute, using (2.7) again,

gi j∇i Fjk = −
H ωk + trg� · F0k + gi j�ik Fj0 (5.17)

and

∇0F0k = (Le0(Le0ω))k − ∂k(∂e0	) − ∂e0ψ
∂k N

N
− 	 · ∂k(∂e0 log(N ))

− gi j ∂i N

N
Fjk + gi j�ki F0 j . (5.18)

Therefore, the second formula again follows from (5.7). ��
Remark 5.6. Local existence for the system (5.12),(5.13) is argued as follows: One first
solves (5.7) by using the Lorentz gauge hλμ∇λ Aμ = 0. In this gauge, (5.5) becomes

�H,h Aα = 1

2
hλμFλα�mp∂μ�mp (5.19)

for which local existence follows from standard theory. Here, �H,h denotes the Hodge
wave operator of the metric h. By the construction in the proof of Lemma 5.4, we obtain
in a unique way a pair (ω,	) which solves the system (5.12),(5.13). On the other hand,
as long as the solution (ω,	) of (5.12),(5.13) is bounded, any corresponding solution
A of (5.19) is also bounded: Let B = ω + 	 · e∗

0 and f be a solution of the equation

�h f = hλμ∇λBμ. (5.20)

Then A = B + d f satisfies the Lorentz gauge and is bounded by construction. The
main advantage of the slice-adapted gauge is that it is easier to control the solution
(5.12),(5.13) by energy estimates.
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The structure of the system (5.12),(5.13) motivates the following energy

Ek(ω) =
k−1
∑

l=0

ˆ
M

(〈(
H )lLe0ω,Le0ω〉g + 〈(
H )l+1ω,ω〉g)dV

� ∥
∥Le0ω

∥
∥2

Hk−1(g)
+ ‖ω‖2Hk (g)

(5.21)

with k ≥ 1. Note that due to the gauge condition ω ⊥ ker(
H ) and elliptic regularity,
the L2-norm of ω is controlled by Ek(ω).

Lemma 5.7. Suppose that F solves (5.7), A ∈ �1(M̃) is a gauged vector potential for
F and 	 and ω are as in Lemma 5.4. Then for k > n/2 + 1 and provided that N is
uniformly positive and ‖N‖Hk is bounded by some fixed constant, we have the energy
estimate

∂T Ek ≤ C(‖D log N‖Hk−1 + ‖�‖Hk−1 + ‖S‖Hk−1 + ‖D�‖Hk−1 +
∥
∥∂e0�

∥
∥

Hk−1)Ek

+ C(
∥
∥∂e0	

∥
∥

Hk + (
∥
∥∂e0 log N

∥
∥

Hk + ‖�‖Hk−1 +
∥
∥∂e0�

∥
∥

Hk−1) ‖	‖Hk )
√

Ek .

(5.22)

Proof. First recall that theHodge Laplacian is defined as
H = dd∗+d∗d. By extending
this definition to the exterior algebra �∗(M), we may also write 
H = (d + d∗)2 where
d +d∗ is a self-adjoint first-order differential operator acting on the exterior algebra. Fix
l ∈ {0, . . . , k − 1}. By integration by parts,

ˆ
M

(〈(
H )lLe0ω,Le0ω〉g + 〈(
H )l+1ω,ω〉g)dV

=
ˆ

M
(〈(d + d∗)lLe0ω, (d + d∗)lLe0ω〉g + 〈(d + d∗)l+1ω, (d + d∗)l+1ω〉g)dV

=:
ˆ

M
EldV . (5.23)

At first, we compute

∂T

ˆ
M
EldV =

ˆ
M

N (∂e0El)dV −
ˆ

M
N · El trg�dV . (5.24)

In the following we will make use of the ∗-notation to denote various contractions
between tensors. Therefore, after integration by parts we get

∂T

ˆ
M
EldV =

ˆ
M

N · � ∗ ((d + d∗)lLe0ω) ∗ ((d + d∗)lLe0ω)dV

+
ˆ

M
N · � ∗ ((d + d∗)l+1ω) ∗ ((d + d∗)l+1ω)dV

+ 2
ˆ

M
N · 〈[Le0 , (d + d∗)l ]Le0ω, (d + d∗)lLe0ω〉dV

+ 2
ˆ

M
N · 〈[Le0 , (d + d∗)l+1]ω, (d + d∗)l+1ω〉dV

+
ˆ

M
DN ∗ (d + d∗)l(Le0ω) ∗ ((d + d∗)l+1ω)dV
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+
ˆ

M
〈(d + d∗)l(Le0(Le0ω) + 
H ω), (d + d∗)lLe0ω〉dV

−
ˆ

M
N · El trg�dV . (5.25)

We have ˆ
M

N · � ∗ ((d + d∗)lLe0ω) ∗ ((d + d∗)lLe0ω)dV

+
ˆ

M
N · � ∗ ((d + d∗)l+1ω) ∗ ((d + d∗)l+1ω)dV

−
ˆ

M
N · El trg�dV ≤ C ‖N‖Hk−2 ‖�‖Hk−2 Ek, (5.26)

and ˆ
M

DN ∗ (d + d∗)l(Le0ω) ∗ ((d + d∗)l+1ω)dV ≤ C ‖DN‖Hk−2 Ek . (5.27)

Now we estimate the commutator terms. Similarly as in Lemma 2.1, we have

[Le0 , (d + d∗)]η = [Le0 , d∗]η = � ∗ Dη + D log N ∗ Le0η + S ∗ η + � ∗ D log N ∗ η

(5.28)

for a general differential form η ∈ C∞(I,�m(M)). Here, we used the notation S =
2divg� − Dtrg�. By induction, we get

[Le0 , (d + d∗)l ]Le0ω =
l−1
∑

m=0

Dm� ∗ Dl−mLe0ω

+
l−1
∑

m=0

Dm+1 log N ∗ Dl−1−m(Le0(Le0ω))

+
l−1
∑

m=0

Dm+1 log N ∗ [Le0 , (d + d∗)l−1−m]Le0ω

+
l−1
∑

m=0

Dm S ∗ Dl−1−mLe0ω

+
l−1
∑

m=0

Dm(� ∗ D log N ) ∗ Dl−1−mLe0ω, (5.29)

and again by induction,

[Le0 , (d + d∗)l ]Le0ω =
l−1
∑

n=0

∑

∑
li+p=n

n
∑

p=0

Dl1+1 log N ∗ . . . Dl p+1 log N
︸ ︷︷ ︸

p−times

∗

[
l−1−n
∑

m=0

Dm� ∗ Dl−n−mLe0ω
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+
l−1−n
∑

m=0

Dm+1 log N ∗ Dl−1−n−m(Le0(Le0ω))

+
l−1−n
∑

m=0

Dm S ∗ Dl−1−n−mLe0ω

+
l−1−n
∑

m=0

Dm(� ∗ D log N ) ∗ Dl−1−n−mLe0ω]. (5.30)

Similarly, we get

[Le0 , (d + d∗)l+1]ω =
l

∑

n=0

∑

∑
li+p=n

n
∑

p=0

Dl1+1 log N ∗ . . . Dl p+1 log N
︸ ︷︷ ︸

p−times

∗

[
l−n
∑

m=0

Dm� ∗ Dl+1−n−mω +
l−n
∑

m=0

Dm+1 log N ∗ Dl−n−mLe0ω

+
l−n
∑

m=0

Dm S ∗ Dl−n−mω +
l−n
∑

m=0

Dm(� ∗ D log N ) ∗ Dl−n−mω

]

.

(5.31)

Therefore, by the bounds on N ,
ˆ

M
N · 〈[Le0 , (d + d∗)l ]Le0ω, (d + d∗)lLe0ω〉dV

≤ C[(‖�‖Hk−2 + ‖S‖Hk−2 + ‖D log N‖Hk−2 ‖�‖Hk−2)Ek

+ ‖D log N‖Hk−2

∥
∥Le0(Le0ω)

∥
∥

Hk−2

√

Ek]. (5.32)

Similarly, the second commutator term is estimated as
ˆ

M
N · 〈[Le0 , (d + d∗)l+1]ω, (d + d∗)l+1ω〉dV

≤ C[‖�‖Hk−1 + ‖S‖Hk−1 + ‖D log N‖Hk−1 (1 + ‖�‖Hk−1)]Ek . (5.33)

Finally, the second last term in (5.25) can be treated by (5.13) and standard estimates.
��

Lemma 5.8. As long as ‖D log N‖Hk + ‖D�‖Hk−1 is small enough, the function 	

satisfies the estimate

‖	‖Hk+1 ≤ C(‖�‖Hk−1 + (1 + ‖�‖Hk−1) ‖D log N‖Hk−1 + ‖S‖Hk−1

+
∥
∥
∥�−1

∥
∥
∥

Hk−1
‖D�‖Hk−1)

√

Ek . (5.34)

Proof. By elliptic regularity and the first equation in Lemma 5.5,

‖	‖Hk+1 ≤ C · ‖	‖Hk ‖D log N‖Hk +
∥
∥[Le0 , divg]ω

∥
∥

Hk−1

+
∥
∥ie0 F

∥
∥

Hk−1

∥
∥
∥�−1

∥
∥
∥

Hk−1
‖D�‖Hk−1 . (5.35)
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By Lemma 2.1, we have
∥
∥[Le0 , divg]ω

∥
∥

Hk−1 ≤ C(‖�‖Hk−1 + (1 + ‖�‖Hk−1) ‖D log N‖Hk−1 + ‖S‖Hk−1)
√

Ek,

(5.36)

and by (5.15),
∥
∥ie0 F

∥
∥

Hk−1 ≤ C(‖D	‖Hk−1 + ‖	‖Hk−1 ‖D log N‖Hk−1 +
√

Ek). (5.37)

Combining these estimates finishes the proof of the lemma. ��
Lemma 5.9. As long as ‖D log N‖Hk + ‖D�‖Hk−1 is small enough and ‖�‖Hk−2 +∥
∥�−1

∥
∥

Hk−2 is uniformly bounded , the function 	 satisfies the estimate
∥
∥∂e0	

∥
∥

Hk ≤ C(‖�‖Hk−2 + ‖S‖Hk−2 + ‖D log N‖Hk−2 + ‖D�‖Hk−2 +
∥
∥∂e0�

∥
∥

Hk−2

+
∥
∥Le0�

∥
∥

Hk−2 +
∥
∥Le0 S

∥
∥

Hk−2 +
∥
∥D∂e0 log N

∥
∥

Hk−2)(
√

Ek + ‖	‖Hk ).

(5.38)

Proof. By differentiating the first equation in Lemma 5.5 in the direction of e0 and using
elliptic regularity, we obtain

∥
∥∂e0	

∥
∥

Hk ≤ C(
∥
∥[Le0 ,
g]	

∥
∥

Hk−2 +
∥
∥∂e0(divg(	d log N ))

∥
∥

Hk−2

+
∥
∥∂e0([Le0 , divg]ω)

∥
∥

Hk−2 +
∥
∥
∥∂e0(g

i j Fi0�
mp∂ j�mp)

∥
∥
∥

Hk−2
). (5.39)

By using Lemma 2.1 and standard estimates, we get
∥
∥[Le0 ,
g]	

∥
∥

Hk−2

≤ C(‖�‖Hk−2 (1 + ‖D log N‖Hk−2) ‖	‖Hk

+ ‖D log N‖Hk−2

∥
∥∂e0	

∥
∥

Hk−1 + ‖S‖Hk−2 ‖	‖Hk−1),
∥
∥∂e0(divg(	d log N ))

∥
∥

Hk−2

≤ C[‖�‖Hk−2 ‖	‖Hk−1 ‖D log N‖Hk−1 + (1 + ‖D log N‖Hk−2)

· (
∥
∥∂e0	

∥
∥

Hk−1 ‖D log N‖Hk−1 + ‖	‖Hk−1

∥
∥D∂e0 log N

∥
∥

Hk−1)

+ ‖D log N‖Hk−2 (‖S‖Hk−2 + ‖�‖Hk−2 ‖D log N‖Hk−2) ‖	‖Hk−2 ],
∥
∥∂e0([Le0 , divg]ω)

∥
∥

Hk−2

≤ C[‖�‖Hk−2 (‖�‖Hk−2 + ‖D log N‖Hk−2 + ‖S‖Hk−2

+ ‖�‖Hk−2 ‖D log N‖Hk−2)
√

Ek + (
∥
∥Le0�

∥
∥

Hk−2

+ (1 + ‖D log N‖Hk−2) ‖�‖2Hk−1 + ‖�‖Hk−2 +
∥
∥D∂e0 log N

∥
∥

Hk−2

+
∥
∥Le0 S

∥
∥

Hk−2 + ‖S‖Hk−2 +
∥
∥Le0�

∥
∥

Hk−2 ‖D log N‖Hk−2

+ ‖�‖Hk−2

∥
∥D∂e0 log N

∥
∥

Hk−2 + ‖�‖Hk−2 ‖D log N‖Hk−2)
√

Ek

+ ‖D log N‖Hk−2

∥
∥Le0(Le0ω)

∥
∥

Hk−2 ],
∥
∥
∥∂e0(g

i j Fi0�
mp∂ j�mp)

∥
∥
∥

Hk−2

≤ C(‖�‖Hk−2

∥
∥ie0 F

∥
∥

Hk−2

∥
∥
∥�−1

∥
∥
∥

Hk−2
‖D�‖Hk−2
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+
∥
∥Le0 ie0 F

∥
∥

Hk−2

∥
∥
∥�−1

∥
∥
∥

Hk−2
‖D�‖Hk−2

+
∥
∥ie0 F

∥
∥

Hk−2

∥
∥
∥�−1

∥
∥
∥

2

Hk−2
‖D�‖Hk−2

∥
∥∂e0�

∥
∥

Hk−2

+
∥
∥ie0 F

∥
∥

Hk−2

∥
∥
∥�−1

∥
∥
∥

Hk−2

∥
∥D∂e0�

∥
∥

Hk−2). (5.40)

Using the smallness of ‖D log N‖Hk + ‖D�‖Hk−1 , we can absorb the terms containing
norms of ∂e0	 into the left hand side of the equation. Consequently, by assuming in
addition that ‖�‖Hk−2 +

∥
∥�−1

∥
∥

Hk−2 is uniformly bounded, we get

∥
∥∂e0	

∥
∥

Hk ≤ C(‖�‖Hk−2 + ‖S‖Hk−2 +
∥
∥D∂e0 log N

∥
∥

Hk−2) ‖	‖Hk

+ C(‖�‖Hk−2 + ‖S‖Hk−2 +
∥
∥D∂e0 log N

∥
∥

Hk−2

+
∥
∥Le0 S

∥
∥

Hk−2 +
∥
∥Le0�

∥
∥

Hk−2)
√

Ek

+ (‖D log N‖Hk−2 + ‖D�‖Hk−2)
∥
∥Le0(Le0ω)

∥
∥

Hk−2

+ (‖	‖Hk−1 +
√

Ek)(‖D�‖Hk−1 +
∥
∥∂e0�

∥
∥

Hk−1). (5.41)

Using the smallness assumptions again and treating
∥
∥Le0(Le0ω)

∥
∥

Hk−2 by the second
equation in Lemma 5.5 and standard estimates, we arrive at the estimate of the lemma.

��
Proposition 5.10. We have the energy estimate

∂T Ek ≤ C(‖�‖Hk−1 + ‖div�‖Hk−1 + ‖N − 3‖Hk + ‖D�‖Hk−1

+
∥
∥Le0�

∥
∥

Hk−2 +
∥
∥Le0div�

∥
∥

Hk−2 +
∥
∥∂e0 N

∥
∥

Hk +
∥
∥∂e0�

∥
∥

Hk−1)Ek (5.42)

as long as the norms of the appearing objects are uniformly bounded and N is uniformly
positive.

5.3. Energy estimates for the functions. With respect to the metric h, given by (2.4),
equation (3.10) is

�h�mn − 2N−1∂e0�mn = �pq Dα�mp Dβ�nq hαβ

+
√
det�(τ0)

2e−2T Fm,αβ Fn,γ δhαγ hβδ =: (∗) (5.43)

and with respect to the future-directed timelike unit normal e0, we can express this
equation as

−∂e0(∂e0�mn) + 
g�mn − 2

3
∂e0� = −gi j∂i (log N )∂ j�mn − trg� · ∂e0�mn

− 2(
1

3
− 1

N
)∂e0�mn + (∗)

=: (∗∗) + (∗), (5.44)

where (∗∗) are the linear error terms and (∗) are the nonlinear error terms. The global
existence of a similar system, namely wave maps from a large class of expanding space-
times, has been studied in [BK].
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To write down the right energy, we consider the model ODE

Ẍ +
2

3
Ẋ + λX = 0. (5.45)

Let

α =
{

1 if λ0 > 1
9 ,

1 − √
1 − 9λ0 if 0 < λ0 < 1

9
, cE =

{

1 if λ0 > 1
9 ,

9λ0 if 0 < λ0 < 1
9

.

(5.46)
Define

E = 1

2
(Ẋ)2 +

λ

2
X2 +

cE

3
X Ẋ . (5.47)

Lemma 5.11. Let λ0 be positive and λ0 �= 1
9 . Then, E is positive definite and if (5.45)

holds for λ ≥ λ0, Ė ≤ −2αE.

Proof. It is straightforward to check that E is positive definite. A computation yields

Ė = (−1

2
+

cE

3
)(Ẋ)2 − cE

6
X Ẋ − cE

3
λX2. (5.48)

In the case λ0 > 1
9 , the right hand side equals − 2

3αE . In the other case, we get Ė =
− 2

3αE+Q(Ẋ , X), where Q is a quadratic form in (Ẋ , X)which is negative semidefinite.
For details, see [AMb, Lemma 6.4] in a similar case. ��
We denote the mean value of �mn by �mn = ffl

M �mndV and we write �⊥ = � − �.
We define

Ek(�) =
∑

m,n

k−1
∑

l=0

ˆ
M

[

(−
g)
l∂e0�mn · ∂e0�mn +

1

2
(−
g)

l+1�⊥
mn · �⊥

mn

+
cE

3
(−
g)

l∂e0�mn · �⊥
mn

]

dV . (5.49)

Bydecomposing into abasis ofLaplace eigenfunctions, one sees that Ek(�) ≈ ∥
∥�⊥∥

∥
Hk+

∥
∥∂e0�

∥
∥

Hk−1 .

Lemma 5.12. Suppose that (5.44) holds. Then, assuming that ‖N‖Hk+1 is uniformly
bounded and N is uniformly positive, we obtain the energy estimate

∂T Ek(�) ≤ −2αEk+C(‖�‖Hk−1 + ‖S‖Hk−1 + ‖N − 3‖Hk+1)Ek + C
∥
∥
∥�−1

∥
∥
∥

Hk−1
E3/2

k

+ Ce−2T
∥
∥
∥

√
det�

∥
∥
∥

L∞ ‖F‖2Hk−1

√

Ek − cE

3

∑

m,n

∂e0�mn

ˆ
M

∂e0�mndV .

(5.50)
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Proof. We consider an arbitrary summand of the energy. For convenience, we write
u = �mn . For the rest of the proof, let l be even, the odd case is similar. By integration
by parts

ˆ
M

[(−
g)
l∂e0u · ∂e0u +

1

2
(−
g)

l+1u⊥ · u⊥ +
cE

3
(−
g)

l∂e0u · u⊥]dV

=
ˆ

M
[(−
g)

l/2∂e0u · (−
g)
l/2∂e0u +

1

2
〈D(−
g)

l/2u⊥, D(−
g)
l/2u⊥〉

+
cE

3
(−
g)

l/2∂e0u · (−
g)
l/2u⊥]dV =:

ˆ
M
EldV . (5.51)

Similar as in the previous subsection, we compute

∂T

ˆ
M
EldV =

ˆ
M

[N∂e0El − NEl trg�]dV

= −
ˆ

M
NEl trg�dV + 2

ˆ
M

N · �(D(−
g)
l/2u⊥, D(−
g)

l/2u⊥)dV

+ Commutator terms

+
ˆ

M
N (−
g)

l/2(∂e0(∂e0u))(−
g)
l/2∂e0udV

+
ˆ

M
N 〈D((−
)l/2∂e0(u

⊥)), D(−
)l/2u⊥〉dV

+
cE

3

ˆ
M

N ((−
g)
l/2∂e0u⊥)(−
g)

l/2∂e0u

+ N ((−
g)
l/2u⊥)(−
g)

l/2(∂e0(∂e0u))dV . (5.52)

By integration by parts and using (5.44), we can treat the last four terms as follows:
ˆ

M
N (−
g)

l/2(∂e0(∂e0u))(−
g)
l/2∂e0udV

+
ˆ

M
N 〈D((−
)l/2∂e0(u

⊥)), D(−
)l/2u⊥〉dV

+
cE

3

ˆ
M

N ((−
g)
l/2∂e0u⊥)(−
g)

l/2∂e0u

+ N ((−
g)
l/2u⊥)(−
g)

l/2(∂e0(∂e0u))dV

= −
ˆ

M
N (−
g)

l/2((∗) + (∗∗))(−
g)
l/2(∂e0u)dV

− cE

3

ˆ
M

N (−
g)
l/2(u⊥)(−
g)

l/2((∗) + (∗∗))dV

− cE

3

ˆ
M

N (−
g)
l/2(∂e0 ū)((−
g)

l/2∂e0u)dV

+
ˆ

M
DN ∗ (−
)l/2(∂e0u⊥) ∗ D(−
g)

l/2u⊥dV

+
ˆ

M
DN ∗ (−
g)

l/2u⊥ D(−
)l/2u⊥dV
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+ (−1

2
+

cE

3
)

ˆ
M

N (−
g)
l/2∂e0u · (−
g)

l/2∂e0udV

− cE

3

ˆ
M

N 〈D(−
g)
l/2u⊥, D(−
)l/2u⊥〉

+
1

2
N ((−
g)

l/2u⊥)((−
g)
l/2∂e0u)dV

≤ C(‖N‖L∞ ‖(∗) + (∗∗)‖Hk−1

√

Ek + ‖DN‖L∞ Ek)

− 2α
ˆ

M
EldV + C ‖N − 3‖L∞ Ek − cE

3
∂e0 ū

ˆ
M

N∂e0udV . (5.53)

In the last step we applied Lemma 5.11 to the last three terms before the inequality
sign. Note that the last term on the right hand side only appears in the case l = 0.
Straightforward estimates show that

‖(∗) + (∗∗)‖Hk−1

≤ C[‖D log N‖Hk−1 ‖D�‖Hk−1 + (
∥
∥trg�

∥
∥

Hk−1 + ‖N − 3‖Hk−1)
∥
∥∂e0�

∥
∥

Hk−1

+
∥
∥
∥�−1

∥
∥
∥

Hk−1
‖D�‖2Hk−1 + e−2T ‖F‖2Hk−1

∥
∥
∥

√
det�

∥
∥
∥

L∞]. (5.54)

It remains to consider the commutator terms. At first, we conclude from Lemma 2.1 by
induction that for any l ∈ N and any sufficiently regular function f ,

[∂e0 , (
g)
l ] f =

2l−2
∑

n=0

∑

∑
li+p=n

n
∑

p=0

Dl1+1 log N ∗ . . . Dl p+1 log N
︸ ︷︷ ︸

p−times

∗

2(l−1)−n
∑

m=0

[Dm� ∗ D2l−n−m f + D2l−n−m−1 log N ∗ Dm+1∂e0 f

+ Dm S ∗ D2l−n−m f +
l−n
∑

m=0

Dm(� ∗ D log N ) ∗ D2l−n−m−1 f ].
(5.55)

Assuming that ‖D log N‖Hk is uniformly bounded, the four commutator terms can be
estimated by ˆ

M
N [∂e0 , (−
)l/2]∂e0u · (−
)l/2∂e0udV

≤ C ‖N‖L∞ [(‖�‖Hk−2 + ‖S‖Hk−2)
∥
∥∂e0u

∥
∥

Hk−1

+ ‖D log N‖Hk−1

∥
∥∂e0(∂e0u)

∥
∥

Hk−2 ]
∥
∥∂e0u

∥
∥

Hk−1 ,ˆ
M

N 〈[Le0 , D(−
)l/2]u⊥, D(−
)l/2u⊥〉dV

≤ C ‖N‖L∞ [(‖�‖Hk−1 + ‖S‖Hk−1)

∥
∥
∥u⊥

∥
∥
∥

Hk

+ ‖D log N‖Hk

∥
∥∂e0u

∥
∥

Hk−1]
∥
∥
∥u⊥

∥
∥
∥

Hk
,ˆ

M
N [∂e0 , (−
)l/2]u⊥ · (−
)l/2∂e0udV
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≤ C ‖N‖L∞ [(‖�‖Hk−2 + ‖S‖Hk−2)

∥
∥
∥u⊥

∥
∥
∥

Hk−1

+ ‖D log N‖Hk−1

∥
∥∂e0u

∥
∥

Hk−2 ]
∥
∥∂e0u

∥
∥

Hk−1 ,ˆ
M

N (−
)l/2u⊥ · [∂e0 , (−
)l/2]∂e0udV

≤ C ‖N‖L∞ [(‖�‖Hk−2 + ‖S‖Hk−2)
∥
∥∂e0u

∥
∥

Hk−1

+ ‖D log N‖Hk−1

∥
∥∂e0(∂e0u)

∥
∥

Hk−2 ]
∥
∥
∥u⊥

∥
∥
∥

Hk−1
. (5.56)

The statement now follows from combining all the estimates and using (5.44). ��
Lemma 5.13. Let u be a function, ū = ffl

M udV and u⊥ = u − ū. Then we have

∂e0 ū = N−1
( 

M
N∂e0udV −

 
M
trg� · u⊥dV

)

. (5.57)

In particular, under the assumptions of Proposition 5.12,

|∂e0 ū − ∂e0u| ≤ C ‖N − 3‖L∞
(∥
∥∂e0u

∥
∥

L2 +
∥
∥
∥u⊥

∥
∥
∥

L2

)

. (5.58)

Proof. Recall that ∂t g = −2� −LX g and e0 = N−1(∂T + X). Then a straightforward
computation shows

∂e0 ū = N−1∂T

´
M udV´
M dV

= N−1

(´
M ∂T udV + 1

2

´
M u · tr∂T gdV´

M dV
− 1

2

´
M udV · ´M tr∂T gdV

(
´

M dV )2

)

= 1

N
´

M dV

(ˆ
M

∂T+X udV −
ˆ

M
u · trg� +

 
M

udV ·
ˆ

M
trg�dV

)

. (5.59)

The second assertion of the lemma follows from standard estimates and using � =
−� + (N−1 − 3−1)g. ��
Proposition 5.14. Under the assumptions of Lemma 5.12, we have

∂T Ek(�) ≤ −2αEk + C(‖�‖Hk−1 + ‖div�‖Hk−1 + ‖N − 3‖Hk+1)Ek

+ C
∥
∥
∥�−1

∥
∥
∥

Hk−1
E3/2

k + Ce−2T
∥
∥
∥

√
det�

∥
∥
∥

L∞ ‖F‖2Hk−1

√

Ek . (5.60)

Proof. This follows from Proposition 5.12, Lemma 5.13, and using the notations S =
divg� − Dtrg� and � = −� + (N−1 − 3−1)g. ��

Remark 5.15. Note that we have control over
∥
∥�−1

∥
∥

Hk−1 due to Lemma 5.13 and the
exponential decay of the energy that we will obtain.
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6. Elliptic Estimates

We provide in this section the standard elliptic estimates for lapse and shift and their
time-derivatives.

Proposition 6.1. Under smallness conditions for the lapse function, a pointwise estimate
of the form 0 < N ≤ 3 holds and moreover the following two estimates.

‖N − 3‖H� ≤ C
(

‖�‖2H�−2 + |τ |‖ρ‖H�−2 + τ 3‖η‖H�−2

)

,

‖X‖H� ≤ C
(

‖�‖2H�−2 + ‖g − γ ‖2H�−1 + |τ |‖ρ‖H�−3 + τ 3‖η‖H�−3 + τ 2‖Nj‖H�−2

)

.

(6.1)

Proof. These estimates are an immediate consequence of elliptic regularity applied to
(3.15) and (3.16), respectively and the maximum principle applied to (3.15). ��
6.1. Estimates of the time derivatives.

Lemma 6.2. Let � ≥ 4. For sufficiently small perturbations, the following estimate
holds.

‖∂T N‖H� ≤ C
[

‖N̂‖H� + ‖X‖H�+1 + ‖�‖2H�−1 + ‖g − γ ‖2H� + |τ |‖S‖H�−2

+ |τ |‖ρ‖H�−1 + |τ |3‖η‖H�−2 + |τ |2‖j‖H�−1 + |τ |3‖T ‖H�−1

+ τ 2|||F |||H�−2

(

‖Le0ω‖H�−2 + ‖ω‖H�−1 + |||F |||H�−2

)

+
(‖∂T �‖H�−2 + ‖D�‖H�−2

)2
]

,

‖∂T X‖H� ≤ C
[

‖X‖H�+1 + ‖�‖2H�−1 + ‖g − γ ‖2H� + ‖N̂‖H�

+ |τ |‖S‖H�−2 + |τ |‖ρ‖H�−1 + |τ |3‖η‖H�−2

+ |τ |2‖j‖H�−1 + |τ |3‖T ‖H�−1 + τ 2|||F |||H�−2

×
(

‖Le0ω‖H�−2 + ‖ω‖H�−1 + |||F |||H�−2

)

+
(‖∂T �‖H�−2 + ‖D�‖H�−2

)2
]

. (6.2)

The constant C depends implicitly on the perturbation via

C = C(‖X‖H�+1 , ‖N − 3‖H�+1 , ‖N‖L∞ , ‖N−1‖L∞ , ‖�‖H�−1 , ‖g − γ ‖H� ). (6.3)

Proof. By differentiation with respect to T the elliptic system implies
(


 − 1

3

)

∂T N = 2N 〈DDN , �〉 − 2N̂
N + 〈DDN ,LX g〉

+

(

2Dk(N�i
k) + Di (N̂ ) − 1

2

Xi − 1

2
Dk Di Xk

)

Di N

+ 2N
(

− 2N |�|3g + 2N̂ |�|2g − 2〈DX, �,�〉 − 2|�|2g
− N 〈�,

1

2
Lg,γ (g − γ ) + J 〉 + 〈�, DDN 〉 + 2N |�|3g − N̂ |�|2g
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− 2〈�,LX g〉 + 8π |τ |〈�, S〉
)

+ N
(

∂T (|τ |ρ) + ∂T (|τ |3η)
)

+
(

|�|2g + |τ |ρ + |τ |3η
)

∂T N , (6.4)

where 〈DX, �,�〉 = Di X j�i
k�

k
j and


(∂T Xi ) + Ri
m(∂T Xm) = −(∂T Ri

m)Xm − [∂T ,
]Xi

+ 2D j (∂T N )�i j + 2D j N (∂T �i j )

− (∂T gik)Dk N̂ − 1

3
gik Dk(∂T N )

+ 2(∂T N )|τ |2jb + 2N∂T (|τ |2jb)

− 2(∂T N )�mn(�i
mn − �̂i

mn) − 2N (∂T �mn)(�i
mn − �̂i

mn)

− 2N�mn∂T �i
mn + (∂T gmk gnl)Dk Xl(�

i
mn − �̂i

mn)

+ Dm(∂T Xn)(�i
mn − �̂i

mn) + Dm Xn∂T �i
mn . (6.5)

We proceed analogous to [AF17] using the evolution equations for the energy-density
and the current, which are independent of the matter model. The divergence identity of
the energy momentum tensor in the unrescaled form, ∇̃α T̃ αβ (cf. [Re], (2.66), (2.67))
reads with respect to the rescaled variables, ρ = ρ̃|τ |−3 and j = |τ |−5j̃ ,

∂T ρ = (3 − N )ρ − Xi∇iρ + τ N−1∇i (N 2j i ) − τ 2
N

3
gi j T

i j − τ 2N�i j T
i j ,

∂T j i = 5

3
(3 − N )j i − X j∇ jj

i − (∇ i X j )j
j + τ∇ j (N T i j ) − 2N�i

jj
j − |τ |−1ρ∇ i N .

(6.6)

The time derivative of the term containing η, however, requires a detailed evaluation
as it depends on the equations of motion for the matter model. We need to estimate
the H �−2-norm of ∂T (τ 3η). This term is τ 3η = 4πτ−2 g̃i j T̃i j and up to a constant and
the factor τ−2 it is evaluated in (4.4). We now take the time derivative of the terms on
the right-hand side of (4.4) modulo the τ 2-factor and replace, if necessary, second time
derivatives of the matter fields using the corresponding equations of motion. We do this
explicitly for two terms to illustrate the computation and leave the remaining terms to
the reader. This computation will provide an estimate for ‖∂T τ 3η‖H�−2 . The first term
we consider explicitly is

∂T

[

gi j
(√

det�tr
(

Fμ
j Fiμ

))]

= (∂T gi j )
(√

det�tr
(

Fμ
j Fiμ

))

+ (∂T
√
det�)gi j tr

(

Fμ
j Fiμ

)

+ gi j
√
det�

(

∂T tr
(

Fμ
j Fiμ

))

. (6.7)

The norms of the first terms on the right-hand side can directly be estimated. We focus
on the evaluation of the last term.
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gi j∂T tr(Fμ
j Fiμ) = gi jδmn∂T

(

τ 2
[

N−2(τ Fj0,m)(τ Fi0,n)

+ N−2Xk (

τ Fjk,m Fi0,n + τ Fj0,m Fik,n
)

+ (gkl − X̂ k X̂ l)Fjk,m Fil,n

])

= gi jδmnτ 2N−2(τ Fj0,m)∂T (τ Fi0,n) + . . . (6.8)

Here we suppress terms that can either directly be estimated or those that can be handled
similarly to the one considered explicitly. We proceed with that term.

gi jδmnτ 2N−2(τ Fj0,m)∂T (τ Fi0,n) = −gi jδmnτ 2N−2(τ Fj0,m)
(

∂i∂T AT,n − ∂2T Ai,n

)

.

(6.9)

There are two terms with time derivatives on the right-hand side, which cannot be
estimated by the energies. We therefore replace those by the corresponding evolution
equations or by suitable quantities estimated in the respective sections on the control of
the matter fields. The relation between A, 	 and ω and the definition of e0 imply

∂T AT,n = N∂e0	n − X	n + (∂T N )	n − (∂T Ai,n)Xi − Ai,n∂T Xi ,

∂2T A�,n = Le0Le0ω�,n + N−3(∂T N + Xi∂i N ) · (∂T + Xi∂i )ω�,n − (Xi∂i )
2ω�,n

− Xi∂i∂T ω�,n − (∂T Xi )∂iω�,n − Xi∂T ∂iω�,n − ∂k(X̂ j )N−1(∂T + Xi∂i )ω j,n

− Le0(∂� X̂ i )ωi,n . (6.10)

We intend to use those equations to replace the left-hand side appearing in the time-
differentiated equations by the right-hand sides, which can then be estimated using the
corresponding results from Sect. 5.2. We can estimate the Sobolev norms of 	 and
∂T 	 by Lemmas 5.8 and 5.9, respectively. The spatial components, i.e. ω and their
time-derivatives are estimated using equivalency of energies as stated in (5.21). The
term Le0Le0ω�,n is substituted using equation (5.13). This, in turn, makes terms in �

appear, for which we use the standard Sobolev norm. Proceeding as described leads to
an estimate for the H �−2-norm of the left-hand side by

Cτ 2|||F |||H�−2 ·
{

‖N∂e0	n − X	n + (∂T N )	n − (∂T Ai,n)Xi − Ai,n∂T Xi‖H�−2

+ ‖Le0Le0ω�,n + N−3(∂T N + Xi∂i N ) · (∂T + Xi∂i )ω�,n

− (Xi∂i )
2ω�,n − Xi∂i∂T ω�,n‖H�−2

+ ‖ − (∂T Xi )∂iω�,n − Xi∂T ∂iω�,n − ∂k(X̂ j )N−1(∂T + Xi∂i )ω j,n

− Le0(∂� X̂ i )ωi,n‖H�−2

}

≤ Cτ 2|||F |||H�−2 ·
{

(1 + ‖∂T N‖H�−2 + ‖∂T X‖H�−1)
(‖Le0ω‖H�−2 + ‖ω‖H�−1

)

+ |||F |||H�−2

(‖N − 3‖H�−1 + ‖D�‖H�−2 + ‖�‖H�−2 + ‖∂T �‖H�−2

)

+
(‖S‖H�−3 + ‖D�‖H�−3 + ‖∂T �‖H�−3 + ‖Le0�‖H�−3 + ‖Le0div�‖H�−3

)

(‖Le0ω‖H�−2 + ‖ω‖H�−1

)
}

, (6.11)
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where C = C(‖N‖L∞ , ‖N−1‖L∞ , ‖�‖L∞ , ‖X‖H�−1 , ‖N − 3‖H�−1 , ‖�‖H�−2 ,

‖D�‖H�−3). The second term from (4.4) that we estimate explicitly is

‖∂T

(
1

N 2 ∂T �mq∂T �mq

)

‖H�−2

≤ C
{

‖∂T N‖H�−2‖∂T �‖2H�−2

+ ‖∂T �‖H�−2

[

(‖∂T �‖H�−2 + ‖D�‖H�−2)(‖∂T N‖H�−2

+ ‖N − 3‖H�−1 + ‖∂T X‖H�−2 + ‖X‖H�−1)

+ ‖D�‖H�−1 + ‖∂e0�‖H�−2 + ‖(∗∗)‖H�−2 + ‖(∗)‖H�−2

]}

. (6.12)

Note that the last two terms are defined in (5.44) and estimated in (5.54). Evaluating the
remaining terms of (4.4) after taking the time derivative we conclude an estimate of the
following form.

‖∂T τ 3η‖H�−2

≤ C

{

‖∂T N‖H�−2

(

τ 2|||F |||H�−2

(‖Le0ω‖H�−2 + ‖ω‖H�−1

)

+‖∂T �‖H�−2

(‖∂T �‖H�−2 + ‖D�‖H�−2

))

+ ‖∂T X‖H�−2

(

τ 2|||F |||H�−2

(‖Le0ω‖H�−2 + ‖ω‖H�−1

)

+‖∂T �‖H�−2

(‖∂T �‖H�−2 + ‖D�‖H�−2

))
}

+ · · · (6.13)

Here, the suppressed terms are not in factors of the norms of ∂T N and ∂T X and therefore
contribute directly to the right-hand side of the final elliptic estimate for the norm of
∂T N . The terms, which are listed explicitly are handled in the following way. We note
that the factor multiplied with the term ‖∂T N‖H�−2 is small by assumption. Applying
elliptic regularity to (6.4) this term can therefore be absorbed in the constant.
On the right-hand side of (6.13) a termwith ‖∂T X‖H�−2 remains,which is alsomultiplied
by a small factor. This preliminary estimate for ∂T N is then used in conjunction with the
elliptic estimate for (6.5), which contains ∂T N terms that are replaced by the preliminary
estimate. This estimate in turn contains ∂T X terms on the right-hand side, which can
be absorbed using smallness of the factors and we obtain an estimate for ‖∂T X‖H�

independent of ∂T N . This can then in turn be used in the preliminary estimate for
‖∂T N‖H� to obtain the final estimate for ‖∂T N‖H� . ��

7. Proof of the Main Theorem

7.1. Preliminaries and local existence. Small perturbations of an initial data set, cor-
responding to the background solution, are not necessarily CMC. As argued in [FK15],
for a related situation, the correspondingmaximal globally hyperbolic development con-
tains a CMC surface with data close to the background. A similar argument applies in
the present context. Starting from this CMC surface we apply the local existence theory
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for the reduced system, which is of hyperbolic-elliptic nature. An analysis as in [AMa]
yields a local existence theory for our system and a continuation criterion assuring the
existence as long as the Sobolev norms in suitable regularity (H4 for metric and fields
and H3 for time derivatives) is sufficient. It therefore suffices to establish the energy
decay to conclude global existence. We now give a detailed description of the main
theorem.

Theorem 7.1. Let (M, γ ) be a compact, negative, 3-dimensional Einstein manifold with-
out boundary and Einstein constant μ = − 2

9 and �b a set of constant functions corre-
sponding to a flat metric on T

q . Then there exists an ε > 0 such that for an rescaled
initial data set (g, �, A, Ȧ,�, �̇) ∈ H4 × H3 × H4 × H3 × H4 × H3 with

(g, �, A, Ȧ,�, �̇) ∈ Bε (γ, 0, 0, 0,�b, 0) (7.1)

the corresponding solution to the rescaled Einstein–Kaluza–Klein system (3.9)–(3.11),
is future-global in time and future complete. As the mean curvature τ of the macroscopic
part tends to zero the perturbation (g − γ,�, A,� − �∞) goes to zero in H4 × H3 ×
H4 × H4. In particular, the field � asymptotically freezes, i.e.

(g, �, A,�) → (γ, 0, 0,�∞) (7.2)

for some set �∞ of constant functions. In particular, the Milne model is an attractor
for the macroscopic geometry of product spacetimes with a torus as an internal space
within the class of perturbations that preserve the full symmetry group of the torus.

7.2. Global existence. The proof of Theorem 7.1 is an almost immediate consequence
of the individual energy estimates for the geometry, the one-forms and the functions.
We define a total energy measuring all perturbations simultaneously by

Etot(g − γ,�,ω,�) := E4(g − γ,�) + e−2T E4(ω) + E4(�). (7.3)

The energy-estimate for the total energy is given by

Lemma 7.2. Under the smallness assumption on the perturbation the following estimate
holds.

∂TEtot(g − γ,�,ω,�) ≤ −2αEtot(g − γ,�,ω,�) + CEtot(g − γ,�,ω,�)3/2.

(7.4)

Proof. This estimate is a consequence of Propositions 5.6, 5.10 and 5.14 and the elliptic
estimates. ��
In order to determine the decay rate of the total energy let us consider the model equation

∂T y(T ) = −2αy(T ) + Cy(T )
3
2 .

For y0 := y(0) > 0 we obtain the solution

y(T ) = 4α2

(

eαT ( 2α√
y0

− C) + C
)2 .

If we assume that y0 < 4α2

C2 then we can deduce that the solution y(T ) has a decay rate

of e−2αT .
Performing a similar analysis of (7.4) we can conclude that the total energy decays

with a rate of e−2αT . In the following, we will use this result to determine the decay of
the individual energies based on the individual energy estimates.
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7.3. Decay rates. Appealing to the individual energy estimate for E4(ω) this yields
the following decay rates.

Lemma 7.3. For sufficiently small initial perturbations, the following estimates hold.

E4(g − γ,�) � e−2αT , E4(ω) � 1, E4(�) � e−2αT . (7.5)

7.4. Completeness. The energy decay rates of the macroscopic geometry are identical
to those of Andersson–Moncrief for the vacuum Einstein flow [AMb]. Therefore future
completeness follows analogously. This completes the proof of Theorem 7.1.

8. Other Related Systems

In this section we list other well-known models for which our method applies. More
precisely, one also obtains nonlinear stability of the 3 + 1-dimensional Milne model as
a solution of the following systems.

8.1. The Brans–Dicke system. The Brans–Dicke model is governed by the action

S(h, φ) =
ˆ

M
(φR − ω

φ
hαβ∇αφ∇βφ)dVh, (8.1)

where ω denotes the dimensionless coupling constant. The critical points of the Brans–
Dicke action are given by

Rαβ − 1

2
Rhαβ = ω

φ2 (∇αφ∇βφ − 1

2
hαβhδγ ∇δφ∇γ φ) +

1

φ
(∇α∇βφ − �φ),

�φ =0.
(8.2)

This system is obtained from our result by setting F = 0 and assuming Tq = S1 so that
�mn = φ.

8.2. The Einstein-wave map system. In order to define the Einstein-wave map system
we also take into account a Riemannian manifold (P, ki j ) and consider a map φ : M →
P . This allows us to provide the action for Einstein-wave maps

S(h, φ) =
ˆ

M
(R − hαβ∇αφi∇βφ j ki j (φ))dVh . (8.3)

The critical points of the Einstein-wave map system are given by

Rμν − 1

2
Rhμν = ∇μφi∇νφ

j ki j − 1

2
∇αφi∇βφ j hαβki j hμν,

�gφ
i = −�i

jk(φ)∇αφ j∇βφkhαβ,

(8.4)

where �i
jk(φ) are the Christoffel symbols on the Riemannian manifold P . This system

is a slight modification of our system in the case of F = 0 since we are now assuming
that the map φ takes its values in a Riemannian manifold. If the map is almost constant
one can assume that its image is contained in a single coordinate chart such that we can
think of it as a set of functions rather than a map between manifolds. The Einstein-wave
map system is not directly captured by our main result by setting F = 0 but exactly the
same energies can be used.
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8.3. The Einstein–Maxwell system. To define the energy for the Einstein–Maxwell
system we consider the vector potential Aμ and its curvature two-form Fμν . The energy
functional for the Einstein–Maxwell system is the following

S(h, F) =
ˆ

M
(R − 1

2
Fαβ Fγ δhαγ hβδ)dVh . (8.5)

The critical points of the Einstein–Maxwell system are given by

Rμν − 1

2
Rhμν =Fμβ Fναhαβ − 1

4
Fαβ Fγ δhαγ hβδhμν,

hαβ∇α Fβδ =0.
(8.6)

We obtain the Einstein–Maxwell system by setting�pq = 0, neglecting the equation for
�pq and changing some constants on the right hand side of the equation on the metric.
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