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Abstract

We consider the problem of reconstructing a signal f from its spectrogram, i.e.,
the magnitudes jV'f j of its Gabor transform

V'f .x; y/ WD

Z
R
f .t/e��.t�x/

2

e�2� iyt dt; x; y 2 R:

Such problems occur in a wide range of applications, from optical imaging of
nanoscale structures to audio processing and classification.

While it is well-known that the solution of the above Gabor phase retrieval
problem is unique up to natural identifications, the stability of the reconstruc-
tion has remained wide open. The present paper discovers a deep and surprising
connection between phase retrieval, spectral clustering, and spectral geometry.
We show that the stability of the Gabor phase reconstruction is bounded by the
reciprocal of the Cheeger constant of the flat metric on R2, conformally multi-
plied with jV'f j. The Cheeger constant, in turn, plays a prominent role in the
field of spectral clustering, and it precisely quantifies the “disconnectedness” of
the measurements V'f .

It has long been known that a disconnected support of the measurements re-
sults in an instability—our result for the first time provides a converse in the
sense that there are no other sources of instabilities.

Due to the fundamental importance of Gabor phase retrieval in coherent
diffraction imaging, we also provide a new understanding of the stability proper-
ties of these imaging techniques: Contrary to most classical problems in imaging
science whose regularization requires the promotion of smoothness or sparsity,
the correct regularization of the phase retrieval problem promotes the “connect-
edness” of the measurements in terms of bounding the Cheeger constant from
below. Our work thus, for the first time, opens the door to the development of
efficient regularization strategies. © 2018 the Authors. Communications on Pure
and Applied Mathematics is published by the Courant Institute of Mathematical
Sciences and Wiley Periodicals, Inc.
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1 Introduction
1.1 Motivation

A signal is typically modeled as an element f 2 B with B an1-dimensional
Banach space. Phase retrieval refers to the reconstruction of a signal from phase-
less linear measurements

(1.1) .j'!.f /j/!2�;

where ˆ D .'!/!2� � B0, the dual of B. Since for any ˛ 2 R the signal ei˛f
will yield the same phaseless linear measurements as f , a signal can only be recon-
structed up to global phase, e.g., up to the identification f � ei˛f , where ˛ 2 R.
If any f 2 B can be uniquely reconstructed from its phaseless measurements (1.1),
up to global phase, we say that ˆ does phase retrieval.

Phase retrieval problems of the aforementioned type occur in a remarkably wide
number of physical problems (often owing to the fact that the phase of a high-
frequency wave cannot be measured), probably most prominently in coherent dif-
fraction imaging [27, 30, 38, 42, 43] where ˆ is either a Fourier or a Gabor dic-
tionary. Other applications include quantum mechanics [40], audio processing
[10, 11], or radar [36].

Given a concrete phase retrieval problem defined by a measurement system ˆ,
it is notoriously difficult to study whether ˆ does phase retrieval, and there are
only a few concrete instances where this is known. In the1-dimensional setting,
examples of such instances include phase retrieval from Poisson wavelet measure-
ments [48], from Gabor measurements [1], and from masked Fourier measure-
ments [49], while it is known that the reconstruction of a compactly supported
function from its Fourier magnitude is in general not uniquely possible [33].

From a computational standpoint, solving a given phase retrieval problem is
even more challenging: Assuming that ˆ does phase retrieval, an algorithmic re-
construction of a signal f would require additionally that the reconstruction be
stable in the sense that

(1.2) dB.f; g/ � c.f /kjˆ.f /j � jˆ.g/jkD for all g 2 B

holds true, where we have put

dB.f; g/ WD inf
˛2R
kf � ei˛gkB; ˆ.f / WD

(
�! C;

! 7! '!.f /;

and k � kD a suitable norm on the measurement space of functions �! C.

1.2 Phase Retrieval Is Severely Ill-Posed
Despite its formidable relevance, the study of stability properties of phase re-

trieval problems has seen little progress until recently [1, 13]; a striking instability
phenomenon has been identified by showing that supf 2B c.f / D 1 whenever
dimB D 1 and some natural conditions on B and D are satisfied. Even worse,
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the stability of finite-dimensional approximations to such problems in general de-
generates exponentially in a power of the dimension [2, 13]. This means that

every 1-dimensional (and therefore every practically relevant)
phase retrieval problem, as well as any fine-grained finite-dimen-
sional approximation thereof, is unstable; phase retrieval is se-
verely ill-posed.

In view of this negative result, any phase retrieval problem needs to be regular-
ized and any regularization strategy for a given phase retrieval problem requires a
deeper understanding of the behavior of the local Lipschitz constant c.f /. This
is a challenging problem requiring genuinely new methods: in [2] we show that
all conventional regularization methods based on the promotion of smoothness or
sparsity are unsuitable for the regularization of phase retrieval problems.

1.3 What Are the Sources for Instability?
We briefly summarize the current understanding of the situation.
A well-known source of instability (e.g., a very large constant c.f /), coined

“multicomponent-type instability” in [1] arises whenever the measurements ˆ.f /
are separated in the sense that f D u C v with ˆ.u/ and ˆ.v/ concentrated in
disjoint subsets of �. Intiutively, in this case the function g D u � v will produce
measurements jˆ.g/j very close to the original measurements jˆ.f /j, while the
distance dB.f; g/ is not small at all, resulting in an instability (see also Figure 1.1
for an illustration). If B is a finite-dimensional Hilbert space over R (i.e., the real-
valued case where only a sign and not the full phase needs to be determined), the
correctness of this intuition has been proved in [8] and generalized in [3] to the
setting of1-dimensional real or complex Banach spaces:

If the measurements ˆ.f / are concentrated on a union of at least
two disjoint domains, phase retrieval becomes unstable and corre-
spondingly, the constant c.f / becomes large.

If B is a Banach space over R it is not very difficult to show that the “multicom-
ponent-type instability” as just described is the only source of instability. More
precisely, one can characterize c.f /, via the so-called � -strong complement prop-
erty (SCP), which indeed provides a measure for the disconnectedness of the mea-
surements; see [3, 8]. While these results provide a complete characterization of
the stability of phase retrieval problems over R, we hasten to add that the verifi-
cation of the � -strong complement property is computationally intractable, which
severely limits their applicability.

The (much more interesting) complex case is considerably more challenging
and almost nothing is known. In this case the validity of the � -SCP does not
imply stability of the corresponding phase retrieval problem (it does not even imply
uniqueness of the solution) [8].

Nevertheless, the results in the real-valued case suggest the following informal
conjecture.
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Conjecture 1.1. Phase retrieval is unstable if and only if the measurements are
concentrated on at least two distinct domains. In other words: if c.f / is large, then
it is possible to partition the parameter set � into two disjoint domains �1; �2 �
� such that the measurements ˆ.f / W � ! C are “clustered” on �1 and �2,
respectively.

While this conjecture seems to be folklore in the phase retrieval community
1 and ensuring connectedness of the essential support of the measurements is a
common empirical regularization strategy [8, 26, 35, 47], we are not aware of any
mathematical result that resolves Conjecture 1.1 for any concrete phase retrieval
problem.

1.4 Phase Retrieval and Spectral Clustering
Looking at Conjecture 1.1, clustering problems in data analysis come to mind.

We may, as a matter of fact, look into this field to formalize what it could possibly
mean that “data is clustered on two disjoint sets.” Let us suppose that � D Rd .
We could interpret the measurements jˆ.f /j W � ! RC as a density measure
d� D jˆ.f /jdx (we shall also write �d�1 for the induced surface measure) of
data points and attempt to find two (or more) “clusters” (i.e., subsets of�) on which
this measure is concentrated. In data analysis, the standard notion that describes
the degree to which it is possible to divide data points into clusters is the Cheeger
constant, which may be defined as

(1.3) inf
C��

�d�1.@C /

min.�.C /; �.� n C//
D inf

C��;

�.C/� 1
2
�.�/

�d�1.@C /

�.C /
I

see, for example, [17,37,44]. Looking at the above definition it becomes clear that
the Cheeger constant indeed gives a measure of disconnectedness: if the constant
above is small, there exists a partition of � into a set C and � n C such that the
volume of both C and � n C is large, while the volume of the “interface” @C is
small.

1.5 Contribution of This Paper
The present paper establishes a surprising connection between the mathematical

analysis of clustering problems and phase retrieval: we show that for a Gabor
dictionary

ˆ.f / D

�
V'f .x; y/ WD

Z
R
f .t/e��.t�x/

2

e�2� itydt

�
.x;y/2R2

1 For example, in [47, p. 1273], it is explicitly stated that “all instabilities . . . we were able to
observe in practice were of the form we described . . . ”, meaning that they arise from measurements
with disconnected components. Furthermore, [47] provides partial theoretical support for Conjecture
1.1 for phase retrieval problems based on wavelet measurements.
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the Cheeger constant also characterizes the stability of the corresponding phase
retrieval problem.

Given f 2 B, where B denotes a certain modulation space and k � kD a natural
norm on the measurement space of functions on� D R2, our main result, Theorem
2.9, shows that the stability constant c.f / can be bounded from above (up to a fixed
constant, independent of f ) by h.f /�1, where

h.f / D inf
C�R2 open; @C is smooth;R
C jV'f j�

1
2

R
R2 jV'f j

kV'f kL1.@C/

kV'f kL1.C/

denotes what we call the Cheeger constant of f . Note that the above definition is
completely in line with (1.3) by setting d� D jV'f .x; y/jdx dy. The motivation
for the term Cheeger constant stems from the fact that h.f / is actually equal to the
well-known Cheeger constant from Riemannian geometry [15] if we endow R2

with the Riemannian metric2 induced by the metric tensor�
jV'f .x; y/j

�
1 0

0 1

��
.x;y/2R2

:

Such a metric is sometimes also called a conformal multiplication of the flat metric
by jV'f j.

We would like to stress that our result can be regarded as a formalization and as
a proof of Conjecture 1.1: The fact that h.f / is small precisely describes the fact
that the measurement space� D R2 can be partitioned into two sets C and R2 nC
such that both kV'f kL1.C/ and kV'f kL1.R2nC/ are large, but on their separat-
ing boundary @C , the measurements are small. The quantity h.f / is therefore a
mathematical measure for the disconnectedness of the measurements. Indeed, as
already mentioned, the Cheeger constant forms a crucial quantity in spectral clus-
tering algorithms [45] and is, in the field of data science, a well-established quan-
tity describing the degree of disconnectedness of data. Our results show that such
a disconnectedness is the only possible source of instability of phase retrieval from
Gabor measurements, and we find it quite remarkable that the notion of Cheeger
constant, which is standard in clustering problems, occurs as a natural characteri-
zation of the stability of phase retrieval.

1.6 Implications
Aside from providing the first ever stability bounds for any realistic1-dimen-

sional phase retrieval problem, our result has a number of important implications:
� Given measurements V'f , estimating the Cheeger constant h.f / is a com-

putationally tractable procedure [5, 39]. In this way one can decide from
the measurements how noise stable the reconstruction is expected to be.

2 Accepting the slight inaccuracy that jV'f j may have zeros, one does not in general get a Rie-
mannian metric.
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FIGURE 1.1. Standard examples of instabilities are constructed by
adding functions whose measurements are essentially supported on sets
that are far apart from each other. For the Gabor phase retrieval prob-
lem, such instabilities can be constructed as f .�/ D '. �Ca/C'. � �a/,
where '.�/ D e�� �

2
denotes the Gaussian and a > 0 is a large real

number. Since V'f .x; y/ D V''.xCa; y/CV''.x�a; y/ holds true,
Lemma A.5 yields that jV'f j � jV'gj, where g.�/ D '. �Ca/�'. ��a/.
Cutting the time-frequency plane along the line x D 0 results in two sets
of equal measure w.r.t. jV'f j.x; y/dx dy. On the separating line (called
a “Cheeger cut”) the weight is small, therefore also the Cheeger constant
will be very small. Our main result shows that all instabilities look like
the above picture.

� Our results (in particular Corollary 2.10 below) for the first time open the
door to the construction of regularization methods for the notoriously ill-
posed phase retrieval problem from Gabor measurements. Any useful reg-
ularizer will have to promote the connectedness of the measurements in
terms of keeping the value h.f / above a certain threshold. To put it more
pointedly:

Contrary to most classical problems in imaging science whose
regularization requires the promotion of smoothness or sparsity,
the correct regularization of the phase retrieval problem pro-
motes the “connectedness” of the measurements in terms of the
Cheeger constant!

We will explore algorithmic implications in future work.
� Often one has a priori knowledge on the data f to be measured in the sense

that f belongs to a compact subset C � B (such as, for example, piecewise
smooth nonnegative functions). By studying the quantity inff 2C h.f / we
can for the first time decide what type of a priori knowledge is useful for
the phase retrieval problem. We also expect our stability results to lead
to insights on how to design masks ! such that the Gabor phase retrieval
problem of the masked signal !f becomes stable.
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� In [1] it has been observed that for various applications, such as audio
processing, the multicomponent-type instability is actually harmless be-
cause the assignment of different bulk phases to different connected com-
ponents of the measurements is not recognizable by the human ear. Our
results show that in fact no other instabilities occur which, for these ap-
plications, makes phase retrieval a stable problem! In particular, using
our insights we expect to be able to make the concept of “multicompo-
nent instability” of [1] rigorous. Furthermore, in Section 2.2 we outline
how to algorithmically find multicomponent decompositions for unstable
Gabor measurements using well-established spectral clustering algorithms
that are precisely based on minimizing the Cheeger constant associated
with the data [45].
� The quantity h.f /�1 has another interpretation: it provides a bound for the

Poincaré constant on the weighted L1.R2; �/ space with measure d� D
jV'f jdx dy. In fact, our results show that the stability of Gabor phase
retrieval is controlled by the Poincaré constant. There exists a huge body
of research providing bounds on such weighted Poincaré constants in terms
of properties of jV'f j. By our results, every such result directly implies a
stability result for phase retrieval from Gabor measurements.
� In Section 2.2 we outline an intimate connection between Gabor phase

retrieval and the solution of the backward heat equation. Our results there-
fore also have implications for the latter problem, which we will study in
detail in future work.

Our proof techniques are not restricted to the case of Gabor measurements but
crucially assume that, up to multiplication with a smooth function, the measure-
ments ˆ.f / constitute a holomorphic function that is, for example, also satisfied
if the measurements arise from a wavelet transform with a Poisson wavelet [48].
In terms of practical applications, the case of Gabor measurements is already of
great relevance: Such measurements arise for instance in ptychography, a subfield
of diffraction imaging where an extended object is scanned through a highly coher-
ent X-ray beam, producing measurements that can be modeled as Gabor measure-
ments [31, 42, 43]. Another application area is in audio processing, where phase
retrieval from Gabor measurements arises in the so-called phase coherence prob-
lem for phase vocoders [7, 28, 41].

2 Summary of Our Main Result
2.1 Main Results of This Paper

This section summarizes our main results. We denote by S.R/ the space of
Schwartz test functions and with S 0.R/ its dual, the space of tempered distributions
[46]. The short-time Fourier transform (STFT) is then defined as follows.
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DEFINITION 2.1. Let g 2 S.R/. Then the short-time Fourier tranform (STFT)
(with window function g) of a tempered distribution f 2 S 0.R/ is defined as3

Vgf .x; y/ WD
�
f; g. � � x/e�2� iy��

S0.R/�S.R/:

If g.t/ D '.t/ WD e��t
2

, we call the arising STFT the Gabor transform.

The functional analytic properties of the STFT are best studied within the frame-
work of modulation spaces as defined below.

DEFINITION 2.2. Given 1 � p � 1, the modulation space Mp;p.R/ is defined
as

Mp;p.R/ WD
˚
f 2 S 0.R/ W Vgf 2 Lp.R2/

	
;

with induced norm
kf kMp;p.R/ WD kVgf kLp.R2/:

Its definition is independent of g 2 S.R/; see [32].

Our goal will be to restore a signal f in a modulation space Mp;p.R/ from its
phaseless Gabor measurements jV'f j W R2 ! RC, up to a global phase.

It is well-known that for any suitable window function the resulting phase re-
trieval problem is uniquely solvable:

THEOREM 2.3. Suppose that g 2 S.R/ is such that its ambiguity function

A.g/.x; y/ WD
Z

R
g.t/g.t � x/e�2� ity dt; .x; y/ 2 R2;

is nonzero everywhere. Then, for any f; h 2 S 0.R/ with jVgf j D jVghj, there
exists ˛ 2 R such that f D ei˛h.

PROOF. This is essentially folklore. For the convenience of the reader we pro-
vide a proof in Appendix A. �

Since the Gabor window '.t/ D e��t
2

satisfies the assumptions of Theorem
2.3, we know that any f is uniquely, up to global phase, determined by its Gabor
transform magnitudes jV'f j. For nice signals we even have an explicit reconstruc-
tion formula (see Theorem A.3 in Appendix A):

f .t/ � f .0/ D F �12
�
SF jVgf j2=Ag

�
.t; t/;

where F2 denotes the Fourier transform operator w.r.t. the second variable and S
is defined by SF.x; y/ D F.y; x/. We do not know, however, how to exploit
this formula for the question of stability of our phase retrieval problem, and our
methods do not make use of it.

What makes the Gabor transform special is that it possesses a lot of additional
structure compared with an ordinary STFT. For instance, it turns out that the Gabor

3 If f is a regular tempered distribution, i.e., abusing notation,
.f; g/S0.R/�S.R/ WD

R
R f .t/g.t/dt for g 2 S.R/;

we would get the usual formula Vgf .x; y/ D
R

R f .t/g.t � x/e
�2� iyt dt .
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transform of a tempered distribution is, after simple modifications, a holomorphic
function.

THEOREM 2.4. Let ´ WD x C iy 2 C. Define �.´/ WD e�.j´j
2=2�ixy/. Then for

every f 2 S 0.R/ the function xC iy 7! �.x; y/ �V'f .x;�y/ is an entire function.

PROOF. This is again well-known, at least for f 2 L2.R/; see, for example, [6],
where it is also shown that ' is essentially the only window function with this
property. For the convenience of the reader, we present a proof in Appendix A. �

We are interested in stability estimates of the form (1.2). To this end we need to
put a norm k � kD on the measurement space S 0.R2/. A suitable family of norms
on the measurement space turns out to be the following:

DEFINITION 2.5. For 1 � p; q < 1, s > 0, r 2 N, D � R2, and F W D ! C
sufficiently smooth, we define the norms

kF kDr;sp;q.D/ WD kF kW r;p.D/ C kF kLq.D/ C k.jxj C jyj/
sF.x; y/kLq.D/

where k � kW r;p.D/ denotes the Sobolev norm as defined in Section 2.5.
If D D R2 we simply write Dr;sp;q instead of Dr;sp;q.R2/.

For q D p and s D 0 the norm k:kDr;0p;p.D/ is equivalent to the Sobolev norm
k:kW r;p.D/.

Remark 2.6. It may appear slightly irritating that the norms on measurement space
include a polynomial weight. It turns out that without any polynomial weight (for
example, putting p D q D 2 and r D s D 0), the stability constant c.f / will
in general be infinite (as a nontrivial exercise the reader may verify this for the
function f .t/ D 1

1Ct2
). In a sense the norms Dr;sp;q.D/ possess some symmetry

between the space domain and the Fourier domain in the sense that they promote
both spatial as well as Fourier-domain localization.

The norms as just introduced measure the time-frequency concentration of F
in terms of both smoothness and spatial localization. Note that the last term in its
definition, k.jxj C jyj/sF.x; y/kLq.R2/, is not translation-invariant and therefore
it will be convenient to apply the norm to what we call centered functions.

DEFINITION 2.7. A function F W R2 ! C is centered if jF j possesses a maximum
at the origin .x; y/ D .0; 0/.

Our setup is now complete; withˆ D .'. � �x/e2� iy�/.x;y/2R2 , B DMp;p.R/
a modulation space, and D the norm as defined above, we are interested in estimat-
ing the constant c.f / as defined in (1.2).

The main insight of this paper is that the constant c.f / behaves like the recip-
rocal of what we call the p-Cheeger constant of f . It is defined as follows:
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DEFINITION 2.8. Let p 2 Œ1;1/ andD � R2. For f 2Mp;p.R/, the p-Cheeger
constant is defined by

(2.1) hp;D.f / WD inf
C�D open: @C\D is smooth,R
C jV'f j

p� 1
2

R
D jV'f j

p

kV'f k
p

Lp.@C/

kV'f k
p

Lp.C/

:

If D D R2 we simply write hp.f / instead of hp;R2.f /.

As already mentioned in the introduction we borrowed here a term from spectral
geometry. Indeed, our definition of hp.f / is equal to the usual Cheeger constant
of the flat Riemannian manifold R2, conformally multiplied with jV'f .x; y/jp;
see [15].

We are ready to give an appetizer to our results by stating the following theorem,
which confirms that disconnected measurements form the only source of instabili-
ties for Gabor phase retrieval.

THEOREM 2.9. Let p 2 Œ1; 2/ and q 2 . 2p
2�p

;1/. Suppose that f 2 Mp;p.R/ is
such that its Gabor transform V'f is centered. Then there exists a constant c > 0
only depending on p, q, and the quotient kf kMp;p.R/=kf kM1;1.R/ such that for
any g 2Mp;p.R/ it holds that

dMp;p.R/.f; g/ � c � .1C hp.f /
�1/ � kjV'f j � jV'gjkD1;4p;q

:

Theorem 2.9 is proved in Section 5.3, where the identical statement is given
again in Theorem 5.11 for the reader’s convenience. A local stability result is
provided in Theorem 5.12.

The theorem above also establishes a noise stability result for reconstruction of
a signal from noisy spectrogram measurements

noisy measurements D jV'f j C �:

COROLLARY 2.10. Let p 2 Œ1; 2/ and q 2 . 2p
2�p

;1/. Suppose that f 2Mp;p.R/
is such that its Gabor transform V'f is centered. Then there exists a constant
c > 0 only depending on p, q, and the quotient kf kMp;p.R/=kf kM1;1.R/ such
that for any � 2 D1;4p;q with k�kD1;4p;q � � and any

h 2 argming2Mp;p.R/k.jV'f j C �/ � jV'gjkD1;4p;q
;

it holds that
dMp;p.R/.f; h/ � c � .1C hp.f /

�1/ � �:

Due to its simplicity, we present the proof here.

PROOF. By Theorem 2.9, it holds that

dMp;p.R/.f; h/ � c � .1C hp.f /
�1/ � kjV'f j � jV'hjkD1;4p;q

� c � .1C hp.f /
�1/ �

�
k.jV'f j C �/ � jV'hjkD1;4p;q

C �
�
:
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To finish the argument we note that, due to the definition of h, it holds that

k.jV'f j C �/ � jV'hjkD1;4p;q
� k.jV'f j C �/ � jV'f jkD1;4p;q

� �: �

Typically, one is mainly interested in the reconstruction of a specific time-fre-
quency region of f . To this end, we will also establish a local stability result, of
which we here offer a special case in the following theorem.

THEOREM 2.11. Let p 2 Œ1; 2/, q 2 . 2p
2�p

;1/ and R > 0. Suppose that f 2
Mp;p.R/ is such that its Gabor transform V'f is centered. Suppose further that
f is "-concentrated on a ball BR.0/ � R2 in the sense thatZ

R2nBR.0/
jV'f .x; y/j

p dx dy � "p:

Then there exists a constant c > 0 only depending on p, q, and

max
�
kV'f kLp.BR.0//

kV'f kL1.BR.0//
;
kV'0f kL1.BR.0//

kV'f kL1.BR.0//

�
such that for any g 2Mp;p.R/ that is "-concentrated in BR.0/, it holds that

dMp;p.R/.f; g/ � c �
�
.1C hp;BR.0/.f /

�1/ � kjV'f j � jV'gjkD1;4p;q.BR.0//
C "

�
:

Similarly to Corollary 2.10, a local noise stability result can also be deduced in
an obvious way. We leave the details to the reader.

2.2 Putting Our Results in Perspective
In this subsection we briefly relate our results to the stable solution of the back-

wards heat equation and our previous work [1].

Connections with the Backwards Heat Equation
We would like to draw the reader’s attention to an intricate connection between

phase retrieval and the solution of the backwards heat equation.
Consider the heat equation in the plane:

ut .t; x; y/ D �u.t; x; y/ D uxx.t; x; y/C uyy.t; x; y/;

u.0; x; y/ D f .x; y/; x; y 2 R; t > 0:
(2.2)

The backward heat equation problem, namely, (stably) reconstructing the initial
value f given u.t; � ; � / for fixed t , is known to be severely ill-posed. Solving the
heat equation in the frequency domain yields

yu.t; �; �/ D yf .�; �/ � e�4�
2.�2C�2/t :

Therefore solving the backward heat equation problem amounts to deconvolving
u.t; � ; � / with a Gaussian kernel.

In Appendix A we show that

F jVgf j2.�; �/ D Af .�; �/ �Ag.�; �/
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(where F denotes the two-dimensional Fourier transform) as well as the fact that
Ag is a two-dimensional Gaussian for the Gaussian window g D e��:

2

. Thus,
reconstructing the ambiguity function of f from the absolute values of its Gabor
transform amounts to solving the backward heat equation problem. Consequently,
the Gabor phase retrieval problem and the backward heat equation problem, as
well as their stabilization, are closely related. We consider the investigation of the
consequences of our results for the stabilization of the backwards heat equation an
interesting problem for future work.

Comparison with the Results of [1]
Our result is very much inspired by stability results in recent work [1] by Rima

Alaifari, Ingrid Daubechies, Rachel Yin, and one of the authors, and in fact grew
out of this work.

In order to put our current results in perspective and to demonstrate the improve-
ment of our present results over those in [1], we give a short comparison between
the main stability results of [1] and the present paper.

In [1] it is shown that, for certain measurement scenarios (including Gabor and
Poisson wavelet measurements), stable phase reconstruction is locally possible on
subsets �0 � � on which the variation of the measurements, namely,

sup!2�0 j'!.f /j
inf!2�0 j'!.f /j

is bounded. However, in an 1-dimensional problem, this quantity will not be
bounded and therefore the results of [1] do not provide bounds for c.f /.

For concreteness we compare the sharpness of our result to the results of [1] at
hand of a very simple example, namely a Gaussian signal f D e��t

2

. A simple
calculation (see Lemma A.5) reveals that

jV'f .x; y/j D re
��=2.x2Cy2/

for some positive number r . Clearly, f is "-concentrated on BR.0/ with " .
e��=2R

2

.
The results of [1] rely on the assumption that the measurements V'f are of little

variation on the domain of interest, which for our particular example isBR.0/. The
main parameter governing the stability in the results of [1] would be

sup.x;y/2BR.0/ jV'f .x; y/j
2

inf.x;y/2BR.0/ jV'f .x; y/j2
D e�R

2

;

and the best stability bound that can be achieved using the results of [1] is thus of
the form

(2.3) inf
˛2R
kf � ei˛gkM2;2.R/ �

c �
�
e�R

2

� kjV'f j � jV'gjkW 1;2.BR.0//
C e��=2R

2�
;

where g is an arbitrary function that is also "-concentrated on BR.0/.
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We see that the stability bound obtainable from the results of [1] grows expo-
nentially in R2, which still suggests that the problem to reconstruct f from its
spectrogram is severely ill-posed.

It turns out that this is not the case. In Appendix B (Theorem B.12) we see
that hp;BR.0/.f / & 1 with the implicit constant independent of R (in fact, this is
well-known and follows from the Gaussian isoperimetric inequality and geometric
arguments).

We can thus directly apply Theorem 2.11 and get the following:

THEOREM 2.12. Let f .t/ D e��t
2

. Let p 2 Œ1; 2/, q 2 . 2p
2�p

;1/, and " > 0.
Then there exists a constant c > 0 only depending on p, q, and " such that for any
R > 1 and g 2Mp;p.R/ that is "-concentrated in BR.0/, it holds that

inf
˛2R
kf � ei˛gkMp;p.R/

� c �
�
kjV'f j � jV'gjkW 1;p.BR.0//

CR4 � kjV'f j

� jV'gjkLq.BR.0// C e
��=2R2

�
:

We remark that a more careful analysis (which exploits the specific form of f )
would yield an estimate of the form

(2.4) inf
˛2R
kf � ei˛gkMp;p.R/ �

c �
�
R � kjV'f j � jV'gjkW 1;p.BR.0//

C e��=2R
2�
;

valid for every p 2 Œ1;1�.
Comparing our result (2.4) with the bound (2.3) from [1], we see that our bound

is much tighter. In particular,
our bound turns a superexponential growth of the stability constant
into a low-order polynomial growth!

A Partitioning Algorithm
Again we want to take up an idea from [1], where the concept of multicompo-

nent phase retrieval was introduced: The multicomponent paradigm amounts to the
following identification of measurements F D V'f , G D V'g:

F D

kX
jD1

Fj � G D

kX
jD1

ei j̨Fj

for any ˛1; : : : ; ˛k 2 R where the components F1; : : : ; Fk are essentially sup-
ported on mutually disjoint domains D1; : : : ;Dk . This means we consider F and
G to be close to each other whenever the quantity

inf
˛1;:::;˛k

kX
jD1

kF � ei j̨GkLp.Dj /
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is small. Thus we no longer demand that there be a global phase factor but allow
different phase factors that are constant on the distinct subdomains Di . Since the
human ear cannot recognize an identification F � G whenever the measurements
Fj are distant from each other, this notion of distance is sensible for the purpose of
applications in audio.

Assume we are given a signal f such that the Cheeger constant hp.f / is small,
meaning that we will expect the phase retrieval problem to be very unstable. A
natural question to ask is whether it is possible to partition the time-frequency
plane in subdomains D1; : : : ;Dk such that Gabor phase retrieval is stable in the
multicomponent sense, i.e.,

(2.5) inf
˛1;:::;˛k2R

kX
jD1

kV'f � e
i j̨V'gkLp.Dj / � B � kjV'f j � jV'gjkD1;4p;q

for moderately large B > 0 and all g.
Obviously the finer the partition, the smaller B will become. However, in view

of the motivation from audio applications we will not want to choose a very fine
partition, because then the corresponding multicomponent distance will not be nat-
urally meaningful.

The challenge therefore is to find, given a signal f , a partitionD1; : : : ;Dk such
that

(i) B is small and
(ii) the measurements V'f � �Dj and V'f � �Dl are distant for all j ¤ l

simultaeously hold.
Corollary 5.14 tells us that B can essentially be bounded by the quantity

(2.6) min
jD1;:::;k

.1C hp;Dj .f /
�1/ �

�
1C

�
p
j

ı2j

�
;

where

ıj D min
�

supfr > 0WBr.´/ � D; inf
�2Br .´/

jV'f .�/j �
1

2
kV'f kL1.Dj /g; 1

�
and �j D

kV'f kLp.Dj /

kV'f kL1.Dj /
:

Since in practice one only has finitely many samples of jV'f j at hand, we consider
a discrete version of this partitioning problem. Spectral clustering methods from
graph theory provide algorithms that aim at finding partitions minimizing a discrete
Cheeger ratio [12]. We now suggest an iterative approach. Once the domain D
is partitioned into two components C and D n C (see Figure 2.1 top) we can
again measure the disconnectedness of these two sets by estimating their respective
Cheeger constants (see Figure 2.1 bottom left). If this estimate lies above a given
threshold, we leave the set untouched in view of (ii). Otherwise we partition again.
After carrying out this iterative procedure a few times, we expect to arrive at a



STABLE GABOR PHASE RETRIEVAL 995

FIGURE 2.1. Top left: Magnitudes of the discrete Gabor transform
of the signal “greasy” from the LTFAT toolbox (http://ltfat.
sourceforge.net/). Top right: Partitioning of jV'f j leading to a
Cheeger constant hD.f / � 0:0019119. Bottom left and middle: Fur-
ther partitionings. Bottom right: The algorithm terminates as soon as
the (estimated) Cheeger constants of all subdomains are above a given
threshold.

partition C1; : : : ; Cl of D such that each Cj is well connected (in terms of the
Cheeger constant being large) and simultaneously for any k ¤ j , the set Ck [ Cj
is very disconnected (in terms of the Cheeger constant being small). We hence
find a partition such that hp;Cj .f / is moderately large for all j . However, to use
Theorem 5.14 we also need ıj not to be too small and �j not to be too large, which
can be verified a posteriori.

In Appendix C we describe the algorithm we used for the experiment illustrated
in Figure 2.1 in detail.

2.3 Architecture of the Proof
The proof of our main result is quite convoluted and draws on techniques from

different mathematical fields such as complex analysis, functional analysis, and
spectral Riemannian geometry. For the benefit of the reader we provide a short
sketch of our argument before we go into the details in the later sections.

Let us start with the following observation: Given two functions F1; F2 W D !
C, we have

(2.7) inf
˛2R
kF1 � e

i˛F2k
p

Lp.D/
D inf
a2C; jajD1

Z
D

ˇ̌̌̌
F2.´/

F1.´/
� a

ˇ̌̌̌p
w.´/d´;

where w.´/d´ is the Lebesgue measure with density w.´/ D jF1.´/jp.

http://ltfat.sourceforge.net/
http://ltfat.sourceforge.net/


996 P. GROHS AND M. RATHMAIR

Now suppose that we could just disregard the constraint jaj D 1 in the above
formula (2.7) (in Section 4 we develop tools which effectively amount to an equiv-
alent result). Then, using the notation Lp.D;w/ for the Lp space with respect to
the measure w d´, we would need to estimate a term of the form

(2.8) inf
a2C





F2F1 � a





Lp.D;w/

:

The Poincaré inequality tells us that (provided w and D are “nice”) there exists
a constant Cpoinc.p;D;w/ < 1, depending only on the domain and the weight,
such that (2.7) can be bounded by

(2.9) Cpoinc.p;D;w/ �





rF2F1





Lp.D;w/

:

Now spectral geometry enters the picture. Cheeger’s inequality [16] says that the
Poincaré constant on a Riemannian manifold can be controlled by the reciprocal of
the Cheeger constant. We would like to apply this result to the metric induced by
the metric tensor �

w.´/

�
1 0

0 1

��
´2D

in order to get a bound on Cpoinc.p;D;w/. However, since w in our case arises
from Gabor measurements, it generally has zeros and therefore does not qualify as
a Riemannian manifold. In Appendix B.1 we will show that for F1 D V'f

Cpoinc.p;D;w/ �
4p

hp;D.f /
;

where hp;D.f / as defined in Definition 2.8 holds true, nevertheless.
Assuming that all heuristics up to this point were correct, we get a bound of the

form

inf
˛2R
kF1 � e

i˛F2kLp.D/ � c � hp;D.f /
�1
�





rF2F1





Lp.D;w/

;

where here and in the following c denotes an unspecified constant.
We are faced with the problem of converting kr.F2=F1/kLp.D;w/ into a useful

estimate in the difference jF1j � jF2j.
Now complex analysis enters the picture. If F1.´/ D V'f .x;�y/ and F2.´/ D

V'g.x;�y/ it is known that the quotient F2=F1 is a meromorphic function (The-
orem 2.4), which, almost everywhere, satisfies the Cauchy-Riemann equations.
It is a simple exercise (Lemma 3.4) to verify that for any meromorphic function
F D F2=F1 it holds that

(2.10) jrF j D
p
2
ˇ̌
rjF j

ˇ̌
almost everywhere. This is great, since we now can get a bound that only depends
on the absolute values jF1j and jF2j!
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To summarize, if all our heuristics were correct, we would get a bound of the
form

inf
˛2R
kF1 � e

i˛F2kLp.D/ � c � hp;D.f /
�1
�





r jF2jjF1j





Lp.D;w/

:

If we now apply the quotient rule to the estimate above and utilize the fact that
w D jF1j

p, we would get a bound of the form

inf
˛2R
kF1 � e

i˛F2kLp.D/

� c � hp;D.f /
�1

�

�



�rjF1jjF1j

�
� .jF1j � jF2j/






Lp.D/

C krjF1j � rjF2jkLp.D/

�
:

(2.11)

This is precisely Theorem 3.3 and Theorem 5.3 (although the details of these results
and their proofs are significantly more delicate than this informal discussion may
suggest; see Section 4).

The estimate (2.11) is already close to what one would like to have, were it
not for the term rjF1j=jF1j in the first summand of the right-hand side of (2.11).
Indeed, since F1 will in general have zeroes, this term will not be bounded.

Here again complex analysis will come to our rescue: The function F1.´/ D
V'f .x;�y/ is, after multiplication with a suitable function �, an entire function of
order 2. Jensen’s formula [20] provides bounds for the distribution of zeros of F1
and this allows us to show that, for 1 � p < 2 the norms krjF1j=jF1jkLp.BR.0//
grow at most like a low-order polynomial in R, which is, remarkably, independent
of f ! These arguments are carried out in Section 5.2.

Finally, we can put all our estimates together and arrive at our main stability
theorems, which are summarized in Section 5.3.

2.4 Outline
The outline of this article is as follows. In Section 3 we start by proving a gen-

eral stability result, Theorem 3.3, for phase retrieval problems. This result, which
depends on some at-this-point-unspecified constants, namely an analytic Poincaré
constant and a sampling constant, is inspired by and generalizes the main result
of [1]. In Section 4 we gain control of the two unspecified constants of the main
result in Section 3 and show that they can be controlled in terms of the global
variation of the measurements as defined in Definition 4.5; see Theorem 5.3. In
Section 5 we specialize to the case of Gabor phase retrieval. We first show that
the global variation of Gabor measurements is independent of the signal to be ana-
lyzed, which will yield an estimate of the type (2.11); see Theorem 5.3. Finally, in
Section 5.2 we remove the logarithmic derivative in the estimate of Theorem 5.3 at
the expense of introducing weighted norms in the error estimate; see Proposition
5.7 whose proof requires deep function-theoretic properties of the Gabor transform.
In Section 5.3 we formulate and prove our main stability result.
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Finally, Appendix A is concerned with auxiliary properties of the Gabor phase
retrieval problem, and in Appendix B we state and prove several auxiliary facts
related to Cheeger and Poincaré constants. In Appendix C we provide some de-
tails on spectral clustering algorithms that aim at estimating Cheeger constants of
graphs.

2.5 Notation
We pause here to collect some notation that will be used throughout this article.

Since some proofs will turn out to be quite technical, we hope that this will prevent
the reader from getting lost in his or her reading.

� For 1 � p <1, D � R2, and a weight function w W D ! RC, we write

Lp.D;w/ WD fF W D ! C WW kF kLp.D;w/ <1g;

where

kF k
p

Lp.D;w/
WD

Z
D

jF.u/jpw.u/du:

If w � 1 we simply write Lp.D/ instead of Lp.D; 1/.
� For w W D ! RC we shall write

w.D/ WD

Z
D

w.u/du:

� For F W D ! C and w W D ! RC we shall write

FwD WD
1

w.D/

Z
D

F.u/w.u/du:

� For 1 � p < 1, k 2 N, and a weight function w W D ! RC, we write
(somewhat informally)

W k;p.D;w/ WD fF W D ! C WW kF kW k;p.D;w/ <1g

for the Sobolev space, where

kF k
p

W k;p.D;w/
WD

X
˛Cˇ�k





 @˛Cˇ

@x˛@yˇ
F





p
Lp.D;w/

:

If w � 1 we simply write W k;p.D/ instead of W k;p.D; 1/; see [24].
� We shall often identify R2 with C via the isomorphism .x; y/ 2 R2 $
´ WD x C iy 2 C. Using this identification we may also interpret a subset
D � R2 as a subset of C.
� For ´ 2 C we shall write Br.´/ for the ball of radius r around ´.
� For a set C � R2 let jC j denote the two-dimensional Lebesgue measure

of C . For a smooth curve A � R2, let `.A/ denote the euclidean length
of A.
� For D � C we denote O.D/ the ring of holomorphic functions on D and
M.D/ the field of meromorphic functions on D.
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� For F W D ! C we may write

F.´/ D u.x; y/C iv.x; y/

where u and v denote the real and imaginary part of F , respectively. We
shall also write

F 0.´/ WD
@

@x
u.x; y/C i

@

@x
v.x; y/;

whenever defined.
� For D � C we denote �D the characteristic function of D.

3 A First Stability Result for Phase Reconstruction
from Holomorphic Measurements

The starting point of our work will be a general stability result, Theorem 3.3,
which we prove in the present section. The estimate will essentially depend on
two quantities: an analytic Poincaré constant and a sampling constant. We will
see later on how these two constants can be controlled, but for the time being we
simply present their definitions.

DEFINITION 3.1. Given a domain D � C, 1 � p < 1, a number ı > 0, a
point ´0 2 D such that Bı.´0/ � D, and a weight w W D ! RC, we define
C apoinc.p;D; ´0; ı; w/ > 0 as the smallest constant such that

(3.1) kF � F.´0/kLp.D;w/ � C
a
poinc.p;D; ´0; ı; w/kF

0
kLp.D;w/

for all F 2M.D/ \O.Bı.´0// \W 1;p.D;w/.

We will refer to C apoinc.p;D; ´0; ı; w/ as an “analytic Poincaré constant.” We
will see later on, in Section 4.1, how one can control this quantity.

Next we define what we call a “sampling constant.”

DEFINITION 3.2. Let D be a domain, w W D ! RC, and G 2 Lp.D;w/. Then
we define, for ´0 2 D, 1 � p <1, the sampling constant

Csamp.p;D; ´0; G;w/ WD
kG.´0/kLp.D;w/

kGkLp.D;w/
D
jG.´0/j � w.D/

1=p

kGkLp.D;w/
:

Later on, in Section 4.2 we will see how to control this quantity.
Having defined the notion of analytic Poincaré constant and sampling constant,

we can now state and prove the following general stability result.

THEOREM 3.3. Let D � C and 1 � p < 1. Suppose that F1; F2 2 Lp.D/ are
smooth functions such that there exists a continuous, nowhere-vanishing function
� W D ! C for which both functions � � F1; � � F2 2 O.D/.

Suppose that ´0 2 D and ı > 0 with Bı.´0/ � D and

jF1.´/j > 0 for all ´ 2 Bı.´0/:
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Then the following estimate holds:

(3.2)

inf
˛2R
kF1 � e

i˛F2kLp.D/

� Csamp.p;D; ´0; jF2=F1j � 1; jF1j
p/kjF2j � jF1jkLp.D/

C C apoinc.p;D; ´0; ı; jF1j
p/

�
�
krjF1j � rjF2jkLp.D/ C kr logjF1j.jF1j � jF2j/kLp.D/

�
:

We remark that this result draws its inspiration from, and generalizes, the main
result of [1]. At its heart lies the following elementary lemma, which is proved
in [1] and which follows directly from the Cauchy-Riemann equations.

LEMMA 3.4. Suppose that F 2M.D/. Then for any ´ D x C iy 2 D that is not
a pole of F we have the equality

jF 0.´/j D jrjF j.x; y/j D

q
.jF jx.x; y//2 C .jF jy.x; y//2:

Having Lemma 3.4 at hand, we can now proceed to the proof of the main result
of this section.

PROOF OF THEOREM 3.3. We need to bound the quantity

(3.3) kF2.´/ � e
i˛F1.´/kLp.D/

for suitable ˛ 2 R.
Step 1. As a first step we start by developing a basic estimate. Consider

F WD F2=F1:

By assumption it holds that F 2M.D/.
Pick ˛ such that

(3.4) jF.´0/ � e
i˛
j D

ˇ̌
jF.´0/j � 1

ˇ̌
:

Now consider for ´ 2 D arbitrary

jF2.´/ � e
i˛F1.´/j D jF1.´/jjF.´/ � e

i˛
j

� jF1.´/j.jF.´/ � F.´0/j C jF.´0/ � e
i˛
j/

D jF1.´/j � jF.´/ � F.´0/j C jF1.´/j � jjF.´0/j � 1j:(3.5)

It follows that
kF2.´/ � e

i˛F1.´/kLp.D/ � kF.´/ � F.´0/kLp.D;jF1jp/

C kjF.´0/j � 1jkLp.D;jF1jp/ DW .I/C .II/:

Step 2. Estimating (II). By Definition 3.2 with w D jF1jp, we see that

.II/ D Csamp.p;D; ´0; jF j � 1;w/kjF1j � jF2jkLp.D/:

Step 3. Estimating (I). By Definition 3.1 with w D jF1jp and F 2 O.Bı.´0//
(which follows from the fact that F1 is nonzero on Bı.´0/), we get that

(3.6) .I/ � C apoinc.p;D; ´0; ı; w/ � kF
0
kLp.D;w/:



STABLE GABOR PHASE RETRIEVAL 1001

We now need to get a bound on kF 0kLp.D;w/ in terms of kjF1j � jF2jkW 1;p.D/

to finish the proof. This is where our key lemma, Lemma 3.4, comes into play,
stating that

kF 0kLp.D;w/ D krjF jkLp.D;w/I

see also (2.10). It thus remains to achieve a bound for krjF jkLp.D;w/. To this end
we calculate

rjF j D
jF1jrjF2j � jF2jrjF1j

jF1j2

D jF1j
�2.rjF1j.jF1j � jF2j/C jF1j.rjF2j � rjF1j//;

which holds at least for all points where neither F1 nor F2 vanishes, hence almost
everywhere. We get that

krjF jkLp.D;w/ � kr logjF1j.jF1j� jF2j/kLp.D/CkrjF2j�rjF1jkLp.D/: �

As it stands, Theorem 3.3 is not yet satisfactory for at least two reasons. First, it
is not yet clear how the analytic Poincaré constant and the sampling constant can be
(simultaeously) controlled. Second, the term kr logjF1j.jF1j� jF2j/kLp.D/ in the
estimate (3.2) is difficult to interpret since the logarithmic derivative r logjF1j will
in general be unbounded. The purpose of the remainder of this article is to show
that all these dependencies can be absorbed into a natural quantity that describes
the degree of disconnectedness of the measurements.

4 Balancing the Constants
Having the technical result in Theorem 3.3 at hand, the next task is to get a grip

on the error term on the right-hand side of (3.2). Indeed, we will show that both the
analytic Poincaré constant, as well as the sampling constant, can be simultaneously
controlled.

4.1 Weighted Analytic Poincaré Inequalities
While the concept of the analytic Poincaré constant does not seem to be very

widely studied, the classical Poincaré constant as defined next is certainly much
better known.

DEFINITION 4.1. For 1 � p <1 denote byCpoinc.p;D;w/ the Poincaré constant
of the domain D w.r.t. the weight w, i.e., the optimal constant C such that for all
F 2 W 1;p.D;w/ \M.D/ we have

kF � FwD kLp.D;w/ � CkrF kLp.D;w/:

There exists a huge body of work devoted to the study of weighted Poincaré
inequalities as just described. In Appendix B we present a collection of results that
are especially relevant for the present paper.
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Remark 4.2. Observe that in Definition 4.1, the defining inequality only needs to
be satisfied for meromorphic functions. This is certainly nonstandard but sufficient
for our purposes, where F will always be the quotient of two (up to normalization)
holomorphic functions. The reason for this somewhat odd definition is that we will
ultimately estimate the Poincaré constant in terms of the Cheeger constant related
to the measurements. The proof of this estimate is carried out in Appendix B, but
it does not necessarily apply to all functions F 2 W 1;p.D;w/, the reason being
the famous Lavrentiev phenomenon, which states that smooth functions need not
necessarily be dense in W 1;p.D;w/ [50].

The next result shows that analytic Poincaré constants as defined in Definition
3.1 can be, to some extent, controlled by the usual Poincaré constant as defined in
Definition 4.1.

LEMMA 4.3. With the notation of Definition 3.1, we have the estimate

C apoinc.p;D; ´0; ı; w/

� Cpoinc.p;D;w/

�

�
1C w.D/1=p � inf

0<a�ı

w.Ba.´0//
1�1=pkw�1kL1.Ba.´0//

jBa.´0/j

�
:

(4.1)

PROOF. The analytic Poincaré inequality as defined in Definition 3.1 applies to
functions F that are holomorphic in Bı.´0/, so, for any disc B WD Ba.´0/ � D

with 0 < a < ı, it holds that F.´0/ D FB WD
1
jBj

R
B F.´/d´; thus we need to

estimate
kF � F.´0/kLp.D;w/ D kF � FBkLp.D;w/

� kF � FwD kLp.D;w/ C kFB � F
w
D kLp.D;w/:

(4.2)

The first summand above is bounded by Cpoinc.p;D;w/krF kLp.D;w/, by the def-
inition of the Poincaré constant.

For the second summand we estimate

jFB � F
w
D j �

1

jBj

Z
B

jF.´/ � FwD jd´

�
kw�1kL1.B/

jBj

Z
B

jF.´/ � FwD jw.´/d´;

which, by Hölder’s inequality, can be bounded by

kw�1kL1.B/

jBj
kF � FwD kLp.D;w/w.B/

1�1=p:

Thus, it holds that

kFB � F
w
D kLp.D;w/ �

kw�1kL1.B/

jBj
kF � FwD kLp.D;w/w.B/

1�1=pw.D/1=p:
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Applying the Poincaré inequality again yields that the second summand in (4.2)
can be bounded by

Cpoinc.p;D;w/ �
kw�1kL1.B/

jBj
w.B/1�1=pw.D/1=p � krF kLp.D;w/:

Since the expression above continuously depends on a > 0, we can also admit
a D ı. This proves the claim. �

Taking a close look at the statement of Lemma 4.3, we see that the analytic
Poincaré constant at ´0 can be controlled by the classical Poincaré constant when-
ever there exists a not-too-small neighborhood around ´0 such that the weight func-
tion w is lower-bounded on this neighborhood. Since we will later on apply this
result to very specific weight functions, we will see that such ´0 can always be
found.

4.2 Weighted Stable Point Evaluations
Having obtained an estimate for the analytic Poincaré constant in the previous

subsection, we go on to develop bounds for the sampling constant that occurs in
the right-hand side of (3.2). We start with the following lemma, which shows that
there exist “many” points with a given sampling constant.

LEMMA 4.4. Suppose that D � C is a domain and w W D ! RC a weight
function, and let G 2 Lp.D;w/ for 1 � p <1. For C > 0 we denote

DC .G/ WD
˚
´ 2 DW kG.´/kLp.D;w/ � CkGkLp.D;w/

	
D
˚
´ 2 DW Csamp.p;D; ´;G;w/ � C

	
:

Then

w.DC .G// � w.D/ �

�
1 �

1

Cp

�
:

PROOF. We computeZ
DnDC .G/

jG.x/jpw.x/dx C

Z
DC .G/

jG.x/jpw.x/dx D kGk
p

Lp.D;w/
:

By the definition of DC .G/ we have that

jG.x/jp >
Cp

w.D/
kGk

p

Lp.D;w/
for all x 2 D nDC .G/;

and this implies that

w.D nDC .G//
Cp

w.D/
kGk

p

Lp.D;w/
C

Z
DC .G/

jG.x/jpw.x/dx � kGk
p

Lp.D/
:

Consequently, �
w.D/ � w.DC .G//

� Cp
w.D/

� 1;

and this yields the statement. �
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4.3 Simultaneously Balancing Poincaré and Sampling Constants
Since Theorem 5.3 requires simultaneous control of the Poincaré and the sam-

pling constant, we now show how the results of the previous two subsections may
be combined to achieve this. We consider, for simplicity, the case that D � C
is convex such that the boundary of D has bounded curvature—the more general
case would be more technical and is therefore omitted (see, however, Remark 4.8).

DEFINITION 4.5. Let D � C and F1W xD ! C be differentiable. We define the
global variation of F1 as

(4.3) ıD.F1/ WD min
�
1

2
�
kF1kL1.D/

krjF1jkL1.D/
; 1

�
:

The following elementary result will be used later on.

LEMMA 4.6. Let D � C be convex and F1W xD ! C be a differentiable function.
Suppose that ´0 is a maximum of jF1j in D, e.g., jF1.´0/j D kF1kL1.D/. Then it
holds that

(4.4) inf
´2BıD.F1/.´0/\D

jF1.´/j �
1

2
kF1kL1.D/:

PROOF. This is a simple consequence of the fact that for all ´ 2 D

(4.5)
ˇ̌
jF1j.´0/ � jF1j.´/

ˇ̌
� j´ � ´0j � krjF1jkL1.D/

and

(4.6) jF1.´0/j D kF1kL1.D/:

Suppose that ´ 2 BıD.F1/.´0/\D. Then j´� ´0j � krjF1jkL1.D/ � 1
2
jF1.´0/j:

By (4.5) and (4.6) it follows that jF1.´/j � 1
2
kF1kL1.D/: �

The following proposition shows that the analytic Poincaré and sampling con-
stants can always be balanced, provided that the quantity ıD.F1/ is not too small.

PROPOSITION 4.7. Let 1 � p < 1. Suppose that D � C is convex and that
the curvature of the boundary @D is everywhere bounded by 1. Suppose F1 W
xD ! C is differentiable, ıD.F1/ as defined in Definition 4.5 is positive, and
G 2 Lp.D; jF1j

p/. Then there exists ´ 2 D with

C apoinc.p;D; ´; ıD.F1/=4; jF1j
p/

� Cpoinc.p;D; jF1j
p/

�

�
1C

2p

�ıD.F1/2=16
�

kF1k
p

Lp.D/

kF1k
p

L1.D/

�(4.7)

and

(4.8) Csamp.p;D; ´;G; jF1j
p/ �

kF1kLp.D/

kF1kL1.D/
� .ıD.F1/

2�/�1=p � 2 � 16�1=p:
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Furthermore, it holds that

(4.9) inf
u2BıD.F1/=4.´/

jF1.u/j > 0:

PROOF. Suppose that ´0 2 xD is a maximum of jF1j and put ı WD ıD.F1/ � 1

as defined in (4.3). First we note that by our assumptions onD and by the definition
(4.3) it holds that the set Bı.´0/\D contains a ball of radius ı=2; i.e., there exists
ź0 such that

Bı=2.ź0/ � D and inf
´2Bı=2.ź0/

jF1.´/j �
1

2
kF1kL1.D/:

But this implies that for all ´ 2 Bı=4.ź0/ it holds that

Bı=4.´/ � D and inf
u2Bı=4.´/

jF1.u/j �
1

2
kF1kL1.D/:

Using this fact, we start by estimating the analytic Poincaré constant for such
a ´, with the estimate from Lemma 4.3. More precisely, we will use the estimate
(4.1) with a D ı=4 and Ba WD Bı=4.´/, which yields that

C apoinc.p;D; ´; ı=4; jF1j
p/

� Cpoinc.p;D; jF1j
p/

�

�
1C kF1kLp.D/ �

kF1k
p�1

Lp.Bı=4/
2pkF1k

�p

L1.D/

�ı2=16

�
� Cpoinc.p;D; jF1j

p/ �

�
1C

2p

�ı2=16
�

kF1k
p

Lp.D/

kF1k
p

L1.D/

�
:

Recall that the above estimate holds for any ´ 2 Bı=4.ź0/.
We now abbreviate Bı=4 WD Bı=4.ź0/ and show that there exists such a ´ 2

Bı=4 that also generates good sampling constants. Let w D jF1jp. By (4.4), we
have that

w.Bı=4/ D

Z
Bı=4

jF1.´/j
p d´ � kF1k

p

L1.D/

�ı2

2p � 16
:(4.10)

The measure of “good” sampling points

DC .G/ WD f´ 2 DW Csamp.p;D; ´;G; jF1j
p/ � C g

by Lemma 4.4 satisfies w.DC .G// � w.D/ � .1 � 1=Cp/: Therefore, if

C >
kF1kLp.D/

kF1kL1.D/
� .ı2�/�1=p � 2 � 161=p

by (4.10), it holds that w.DC .G// > w.D/ � w.Bı=4/, implying that DC .G/ \
Bı=4 ¤ ¿: Any ´ in this intersection will satisfy the desired estimates. �
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The result of Proposition 4.7 may still seem very technical. However, we have
succeeded in providing bounds for both the analytic Poincaré constant as well as
the sampling constant that appear in the right-hand side of (3.2).

Indeed, from Proposition 4.7 we can infer that these constants essentially depend
only on the Poincaré constant of the measurements jF1jp and the quantity ıD.F1/.

Remark 4.8. As an alternative to the global variation as defined in (4.5), we may
look at the quantity

zıD.F1/ WD min
�

sup
�
r > 0W

Br.´/ � D; inf
�2Br .´/

jF1.�/j �
1

2
kF1kL1.D/

�
; 1

�(4.11)

Replicating the proof of Proposition 4.7 reveals that for any G 2 Lp.D; jF1jp/
there is a ´ 2 D such that

C apoinc.p;D; ´;
zıD.F1/=2; jF1j

p/ � Cpoinc.p;D; jF1j
p/

�

�
1C

2p

�zıD.F1/2=4
� �
p
D

�(4.12)

and

(4.13) Csamp.p;D; ´;G; jF1j
p/ � �D � .zıD.F1/

2�/�1=p � 2 � 4�1=p;

where we denote �D WD
kF1kLp.D/
kF1kL1.D/

. Additionally, it holds that

(4.14) inf
u2BzıD.F1/=2

.´/
jF1.u/j > 0:

Note that in contrast to Proposition 4.7 we do not need the domainD to be convex,
and its boundary does not have to meet any curvature assumptions.

In the next section we shall see that the quantity ıD.F1/ can always be uniformly
bounded if F1 arises as the Gabor transform of any f 2 S 0.R/, e.g., F1.´/ D
V'f .x;�y/.

5 Gabor Phase Retrieval
Up to now all results have applied to general functions F1 and F2, which map

from a domain D � C to C and which are holomorphic after multiplication
with a function �. Indeed, by combining Theorem 3.3 with Proposition 4.7, we
obtain a stability result that essentially depends only on the Poincaré constant
Cpoinc.p;D; jF1j

p/ and the quantity ıD.F1/.
We will, from now on, specialize to the case that F1 is, up to a reflection, the

Gabor transform of a function f 2 S 0.R/, e.g., F1.´/ D V'f .x;�y/; where
'.t/ D e��t

2

and V'f is defined as in Definition 2.1. The Gabor transform
enjoys a lot of structure that allows us to obtain major improvements in the general



STABLE GABOR PHASE RETRIEVAL 1007

stability bound (3.2). In order to estimate inf˛2RkV'f � e
i˛V'gkLp.D/ we will

apply the results of Chapters 3 and 4 to F1, F2.´/ D V'g.x;�y/, and the reflected
domain fx́W ´ 2 Dg.

First, in Section 5.1 we shall see that the quantity ıD.V'f / can essentially be
bounded independently of f , which will finally give us complete control over the
implicit constants that appear in the estimate (3.2). Then, in Section 5.2 we will
show that, in the case of Gabor measurements, the term involving a logarithmic
derivative in (3.2) can be absorbed into an error term with respect to a norm Dr;sp;q
for suitable parameters. This latter result will exploit deep function-theoretic prop-
erties of the Gabor transform. Finally, in Section 5.3 we will put all these results
together and present our final stability estimates for Gabor phase retrieval.

5.1 Balancing the Constants
The goal of the present section is to establish the following result.

PROPOSITION 5.1. Let D � C and suppose f 2 M1;1.R/. Then there exists
ı > 0, only depending on kV'f kL1.D/=kV'0f kL1.D/, such that

(5.1) ıD.V'f / � ı:

For D D C we get a stronger statement: There exists a universal constant ı �
.25=4�/�1 with

(5.2) inf
f 2M1;1.R/

ıC.V'f / � ı:

PROOF. The proof proceeds by showing that the L1 norm of the gradient of
jV'f j cannot be much larger than the L1 norm of jV'f j. Indeed, a simple calcu-
lation (or a look at equations (3) and (5) in [7]) reveals that

ˇ̌
rjV'f j

ˇ̌
D jV'0f j,

which directly implies krjV'f jkL1.D/ D kV'0f kL1.D/. Looking at (4.3) im-
plies (5.1).

When D D C we can use the norm equivalence kV' �kLp.C/ � kV'0 �kLp.C/ on
Mp;p.R/ for any p 2 Œ1;1� (see [32, prop. 11.3.2(c)]). To get a positive lower
bound of ı, we denote V �' , the adjoint of the Gabor transform, by

V �' F WD

Z
R

Z
R
F.x; y/MyTx' dx dy;

where T and M denote the translation and the modulation operator, respectively,
and rewrite

V'0f D V'0

�
1

k'kL2.R/
V �' V'f

�
D 21=4 � V'0V

�
' V'f:

Applying equation (11.29) from the proof of proposition 11.3.2 in [32] allows us
to estimate pointwise

jV'0f j D 2
1=4
� jV'0V

�
' V'f j � 2

1=4
� .jV'f j � jV'0'j/;
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and therefore

(5.3) kV'0f kL1.C/ � 2
1=4
� kV'f kL1.C/kV'0'kL1.C/:

As an elementary integration exercise, the reader verifies that

(5.4) kV'0'kL1.C/ D �:

From the definition of ıC.V'f / and from equations (5.3) and (5.4), it follows that

ıC.V'f / D min
�
1

2
�
kV'f kL1.C/

kV'0f kL1.C/
; 1

�
�

1

25=4�
: �

As a corollary we get the following result for D D C.

COROLLARY 5.2. Let 1 � p <1. Suppose that f 2M1;1.R/ and let F1.´/ D
V'f .x;�y/. Furthermore, suppose that G 2 Lp.C; jF1jp/. Then there exist
constants c; ı > 0 (independent of f and G!) such that there exists ´ 2 C with

C apoinc.p;C; ´; ı; jF1j
p/ � c � Cpoinc.p;C; jF1j

p/ �

�
1C
kF1k

p

Lp.C/

kF1k
p

L1.C/

�
;(5.5)

Csamp.p;C; ´; G; jF1j
p/ � c �

kF1kLp.C/

kF1kL1.C/
;(5.6)

and

(5.7) inf
u2Bı.´/

jF1.u/j > 0:

PROOF. This is a direct consequence of Propositions 4.7 and 5.1. �

Observe that for f; g 2Mp;p.R/ the function G WD jF2=F1j � 1 is an element
of Lp.C; jF1jp/, where we put F1.´/ D V'f .x;�y/ and F2.´/ D V'g.x;�y/.
Furthermore, let us point out that Mp;p.R/ is contained in M1;1.R/ for all p 2
Œ1;1�. Applying Corollary 5.2, together with the well-known fact that � � F1 and
� � F2 are holomorphic for suitable � (Theorem 2.4) to Theorem 3.3, we get the
following stability result:

THEOREM 5.3. Suppose that f 2Mp;p.R/ and g 2Mp;p.R/. Then there exists
a constant c > 0 only depending on kV'f kLp.C/=kV'f kL1.C/ such that

(5.8)

inf
˛2R
kf � ei˛gkMp;p.R/

� c � .1C Cpoinc.p;C; jV'f j
p//

�
�
kjV'f j � jV'gjkW 1;p.C/ C kr logjV'f j.jV'f j � jV'gj/kLp.C/

�
:

For general D � C we get the following result.

COROLLARY 5.4. Suppose that f 2 M1;1.R/ and let F1.´/ D V'f .x;�y/.
Suppose that D � C satisfies the assumptions of Proposition 4.7 and that G 2
Lp.D; jF1j

p/. Then there exists a constant c that only depends monotonically
increasingly on kV'0f kL1.D/=kV'f kL1.D/ (and that is otherwise independent
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of f and D!), a constant ı > 0 that depends monotonically decreasingly on
kV'f kL1.D/=kV'0f kL1.D/ (and that is otherwise independent of f and D!),
and ´ 2 D with Bı.´/ � D such that

C apoinc.p;D; ´; ı; jF1j
p/ � c � Cpoinc.p;D; jF1j

p/ �

 
1C
kF1k

p

Lp.D/

kF1k
p

L1.D/

!
;(5.9)

Csamp.p;D; ´;G; jF1j
p/ � c �

kF1kLp.D/

kF1kL1.D/
:(5.10)

and

(5.11) inf
u2Bı.´/

jF1.u/j > 0:

PROOF. This is a direct consequence of Theorem 2.4, Proposition 4.7, and
Proposition 5.1. �

As before, Corollary 5.4 directly leads to a stability result for Gabor phase re-
trieval.

THEOREM 5.5. Suppose that f; g 2 Mp;p.R/ and let D � C satisfy the as-
sumptions of Proposition 4.7. Then there exists a constant c > 0 only depending
on

max
�
kV'f kLp.D/

kV'f kL1.D/
;
kV'0f kL1.D/

kV'f kL1.D/

�
such that

(5.12)

inf
˛2R
kV'f � e

i˛V'gkLp.D/

� c � .1C Cpoinc.p;D; jV'f j
p//

�
�
kjV'f j � jV'gjkW 1;p.D/ C kr logjV'f j.jV'f j � jV'gj/kLp.D/

�
:

5.2 Controlling the Logarithmic Derivative
Compared to Theorem 2.9, Theorems 5.3 and 5.5 are now independent of any

choice of ´0, which is very nice. However, the term involving the logarithmic
derivative of jV'f j in (5.8) and (5.12) is still bothersome, in particular because, in
general, jr logjV'f jj will certainly be unbounded. It turns out that in the case of
Gabor measurements this quantity can be absorbed into an error term with respect
to a norm as defined in Definition 2.5. The proof of this fact is, however, quite
difficult and involves deep function-theoretic properties of the Gabor transform.

We begin by estimating the norms of the logarithmic derivative of the modules
of a Gabor transform V'f on discs with growing radii. It turns out that these can
be estimated independently of the original signal f 2 M1;1.R/. The reason for
this perhaps surprising fact is that the holomorphic function � � V'f , with suitable
�, satisfies certain restricted growth properties. Jensen’s formula relates the distri-
bution of zeros of a holomorphic function with its growth rate, which allows us to
bound the number of zeros of V'f in a given disc. This in turn will yield a bound
on the norm of the logarithmic derivative of jV'f j as follows.
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PROPOSITION 5.6. Let 1 � r < 2. There exists a constant C that only depends on
r such that for all f 2M1;1.R/ and all R > 1 we have an estimate

kr logjV'f jkLr .BR.´0// � CR
3;

where ´0 is a maximum of jV'f j.

PROOF. Let R > 1 be fixed. We assume w.l.o.g. that ´0 D 0 (otherwise f can
be translated and modulated such that the origin 0 is a maximum of jV'f j).

Step 1. PREPARATIONS. Let F1.´/ D V'f .x;�y/ and �.´/ WD e�.
j´j2

2
�ixy/.

Then, by Theorem 2.4, the function G D � �F1 is an entire function. Applying the
gradient yields

rjGj D rj�j � jF1j C j�j � rjF1j;

and thus for any ´ such that F1.´/ ¤ 0, it holds that

rjF1j.´/

jF1j.´/
D
rjGj.´/

jGj.´/
�
rj�j.´/

j�j.´/
D
rjGj.´/

jGj.´/
� �

�
x

y

�
:

By the triangle inequality and equation (2.10) we can estimate

(5.13)
ˇ̌̌̌
rjF1j.´/

jF1j.´/

ˇ̌̌̌
�

ˇ̌̌̌
rjGj.´/

jGj.´/

ˇ̌̌̌
C �

ˇ̌̌̌�
x

y

�ˇ̌̌̌
D

ˇ̌̌̌
rjGj.´/

jGj.´/

ˇ̌̌̌
C �j´j:

In order to estimate the norm of the logarithmic derivative of jGj, we will exploit
the Poisson-Jensen formula [20], which states that for any entire function G with
zeros j́ (repeated according to multiplicity) and R > 0 it holds that

logjG.´/j D �
X
j j́ j<R

log
ˇ̌̌̌
R2 � x́j´

R.´ � j́ /

ˇ̌̌̌

C
1

2�

Z 2�

0

<

�
Rei� C ´

Rei� � ´

�
logjG.Rei� /jd�; j´j < R:

(5.14)

To calculate the logarithmic derivative of jGj we set

h.´; u/ WD
R2 � xu´

R.´ � u/

and

k.´; �/ WD
R2 � x2 � y2

.R cos � � x/2 C .R sin � � y/2

and rewrite (5.14) as follows:

(5.15) logjG.´/j D �
X
j j́ j<R

logjh.´; j́ /jC
1

2�

Z 2�

0

k.´; �/ � logjG.Rei� /jd�:
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By (5.13) and by differentiation of (5.15) we obtain for j´j < R and F1.´/ ¤ 0

that

(5.16)
ˇ̌̌̌
rjF1j.´/

jF1j.´/

ˇ̌̌̌
� .jI.z/j C jII.z/j C jIII.z/j/;

where we put

I.z/ WD
X
j j́ j<R

r logjh.´; j́ /j;

II.z/ WD
1

2�

Z 2�

0

rk.´; �/ � logjG.Rei� /jd�;

III.z/ WD ´;

where in the definition of II the integral of a vector-valued function is to be under-
stood as the vector that contains the integrals of the individual entries. We will de-
rive estimates for kIkLr.BR=2.0//, kIIkLr.BR=2.0//, and kIIIkLr.BR=2.0// separately. Be-
fore that we need to bound the number of zeros of V'f on discs.

Step 2. BOUNDING THE NUMBER OF ZEROS OF V'f . We will require the
well-known Jensen’s formula, which is a special case (´ D 0) of equation (5.14):

logjG.0/j D �
X
j j́ j<R

log
ˇ̌̌̌
R

j́

ˇ̌̌̌
C

1

2�

Z 2�

0

logjG.Rei� /jd�:

By our assumption that jV'f .0/j D 1 this implies

(5.17)
X
j j́ j<R

log
ˇ̌̌̌
R

j́

ˇ̌̌̌
D

1

2�

Z 2�

0

logjG.Rei� /jd�:

Jensen’s formula allows us to bound the number of zeros in a ball of radius R:

jfj W j j́ j < Rgj D
X
j j́ j<R

1

�
1

log 2

X
j j́ j<2R

log
ˇ̌̌̌
2R

j́

ˇ̌̌̌

D
1

log 2
�
1

2�

Z 2�

0

logjG.2Rei� /jd�

D
1

log 2
�
1

2�

Z 2�

0

logjF1.2Rei� /j C logj�.2Rei� /jd�

D
1

log 2

�
1

2�

Z 2�

0

logjF1.2Rei� /jd� C 2�R2
�
�

2�

log 2
R2;

where we used that jF1j � 1.
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Step 3. ESTIMATING THE NORM OF I. First we calculate jr logjhj.´; u/j. Re-
call (Lemma 3.4) that for meromorphic functions the length of the gradient of the
modulus coincides with the absolute value of the complex derivative (almost ev-
erywhere). Thus we calculate

jr logjhj.´; u/j D jrjhj.´; u/=h.´; u/j

D jh0.´; u/=h.´; u/j

D

ˇ̌̌̌
�xuR.´ � u/ � .R2 � xu´/R

R2.´ � u/

. R2 � xu´

R.´ � u/

ˇ̌̌̌
D

ˇ̌̌̌
xu

R2 � xu´
C

1

´ � u

ˇ̌̌̌
:

Therefore we can estimate for j´j < R=2

jI.z/j �
X
jzjj<R

ˇ̌
rjhj.z; zj/

ˇ̌
D

X
j j́ j<R

ˇ̌̌̌
x́j

R2 � x́j´
C

1

´ � j́

ˇ̌̌̌

�

X
j j́ j<R

ˇ̌̌̌
x́j

R2 � x́j´

ˇ̌̌̌
C

X
j j́ j<R

j´ � j́ j
�1

�
2�

log 2
R2 �

2

R
C

X
j j́ j<R

j´ � j́ j
�1:

One can calculate that for s > 0 and r 2 Œ1; 2/

k´ 7! ´�1kLr .Bs.0// D c � s
2=r�1;

where c is a finite constant that only depends on r . Therefore



´ 7! 1

´ � j́






Lr .BR=2.0//

� k´ 7! ´�1kLr .BR=2.0// D c
0
�R2=r�1;

where c0 again only depends on r . Since the number of zeros in BR.0/ is at most
of the order of R2, there is a constant c00 that only depends on r such that

kIkLr.BR=2.0// � c
00.Rk1kLr .BR=2.0// CR

2R2=r�1/

D c00..�=4/1=r C 1/R2=rC1 � 2c00R3:
(5.18)

Step 4. ESTIMATING THE NORM OF II.z/. First we compute the derivative
of k:

rk.´; �/ D

�
�2x

�2y

�
jRei� � ´j2 � jR � ´j2

�
�2.R cos � � x/
�2.R sin � � y/

�
jRei� � ´j4

:
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Therefore we obtain for j´j < R=2 that

jrk.´; �/j �
2j´j

.R=2/2
C

2R2

.R=2/3
D 24R�1:

Before we continue to estimate II we introduce MG.R/ WD maxj´j�RjG.´/j for
R > 0. Since jF1.0/j D 1 and jF1j � 1 we can conclude that

(5.19) 1 �MG.R/ � e
�
2
R2 :

Hence we obtain

jII.z/j �
1

2�

Z 2�

0

jrk.´; �/jjlogjG.Rei� /jjd�

�
12

�
R�1

Z 2�

0

jlogjG.rei� /jjd�

�
12

�
R�1

�Z 2�

0

ˇ̌
logjG.rei� /j � logMG.R/

ˇ̌
d� C

Z 2�

0

logMG.R/d�

�
D
12

�
R�1

Z 2�

0

2 logMG.R/ � logjG.Rei� /jd�:

By (5.17) we know that
R 2�
0 logjG.Rei� /jd� is nonnegative. Using (5.19) we

further estimate II and arrive at

jII.´/j �
24

�
R�1

Z 2�

0

logMG.R/d� � 48R
�1
�
�

2
R2 D 24�R;

and consequently there is a constant c000, which only depends on r , such that

(5.20) kIIkLr .BR=2.0// � 24�R � ..R=2/
2�/1=r � c000R3:

Step 5. PUTTING THE ESTIMATES TOGETHER. It only remains to bound the
norm of III.´/ D ´. However, it is an easy exercise to calculate

k´ 7! ´kLr .BR=2.0// D c
0000R1C2=r

for a constant c0000 depending on r only. Together with (5.18), (5.20), and (5.16),
this yields that there exists a C > 0, which only depends on r , such that

kr logjF1jkLr .BR=2.0// � CR
3 for all R > 0:

Substitution of R by 2R concludes the proof. �

Proposition 5.6 yields important information on how fast the Lr -norm of the
logarithmic derivative of a Gabor magnitude can possibly grow as the size of the
integration domain increases. It is remarkable that this quantity can be bounded
independently of the original signal.

Moreover, with Proposition 5.6 in hand we can go on to control the bothersome
logarithm term in the estimates of Theorems 5.3 and 5.5:
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PROPOSITION 5.7. Let p 2 Œ1; 2/ and q 2 . 2p
2�p

;1/. Then there exists a polyno-
mial � of maximal order 4 such that for any f 2 M1;1.R/ with V'f centered
(see Definition 2.7), all domains D � C with 0 2 C (D D C is allowed!), and all
measurable functions � W D ! C, it holds that

kr logjV'f j ��kLp.D/ � k� � �.j�j/kLq.D/:

In particular, it holds that

kr logjV'f j �
�
jV'f j � jV'gj

�
kLp.D/ � k

�
jV'f j � jV'gj

�
� �.j�j/kLq.D/

for any g 2 S 0.R/.

PROOF. We only consider D D C since the general case can be proven in the
exact same way.

Let D0 WD B1.0/ and Dj WD B2j .0/ n B2j�1.0/ for j � 1; then

(5.21) kr logjV'f j ��k
p

Lp.C/ D
X
j�0

Z
Dj

jr logjV'f jjp � j�jp:

The numbers s D q
q�p

and s0 D q
p

are Hölder-conjugated. Denoting r WD ps D
pq
q�p

we have

1

r
D
1

p
�
1

q
>
1

p
�
2 � p

2p
D
1

2
;

and therefore r < 2. Applying Hölder’s inequality we obtainZ
Dj

jr logjV'f jjp � j�jp � kr logjV'f jk
p

Lr .Dj /
� k�k

p

Lq.Dj /

� .C � 23j /p � k�k
p

Lq.Dj /

whereC is the constant from Propositon 5.6 and only depends on r . Using Hölder’s
inequality for sums yields

kr logjV'f j ��k
p

Lp.C/ � C
p
�

X
j�0

2�
j
s � 23pjC

j
s

�Z
Dj

j�jq
�1=s0

� Cp �

�X
j�0

2�j
�1=s

�

�X
j�0

2.3ps
0C s
0

s
/j

Z
Dj

j�jq
�1=s0

D Cp � 21=s �

�Z
C
j�jq �

X
j�0

2.3ps
0C s
0

s
/j�Dj

�1=s0
:

For ´ 2 Dj it holds that

2.3ps
0C s
0

s
/j
� 2 � .j´j3ps

0C s
0

s C 1/ D 2 � .j´j.3C1=r/q C 1/ � 2 � .j´j4 C 1/q:
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Therefore we arrive at

kr logjV'f j ��k
p

Lp.C/ � C
p
� 21=s �

�Z
C
j�jq � 2.j´j4 C 1/q

�1=s0
D

�Z
C
j�jq � .C21=r.j´j4 C 1//q

�1=s0
D k� � �.j:j/k

p

Lq.C/;

where we set �.´/ WD C21=r.´4 C 1/. The second claim follows immediately by
considering � D jV'f j � jV'gj. �

5.3 Putting Everything Together
We can now apply Proposition 5.7 to control the logarithmic derivative in The-

orem 5.3 and immediately get the following result.

THEOREM 5.8. Let p 2 Œ1; 2/ and q 2 . 2p
2�p

;1/. Suppose that f 2 Mp;p.R/ is
such that its Gabor transform V'f is centered (otherwise we could translate and
modulate f ). Then there exists a constant c > 0 only depending on p, q, and the
quotient kf kMp;p.R/=kf kM1;1.R/ such that for any g 2Mp;p.R/ it holds that

dMp;p.R/.f; g/ � c � .1C Cpoinc.p;C; jV'f j
p// � kjV'f j � jV'gjkD1;4p;q

:

We can also establish the following local version, which follows by combining
Proposition 5.7 and Theorem 5.5.

THEOREM 5.9. Let p 2 Œ1; 2/ and q 2 . 2p
2�p

;1/. Suppose that D � C satisfies
the assumptions of Proposition 4.7. Suppose that f 2 Mp;p.R/ is such that its
Gabor transform V'f is centered (otherwise we could translate and modulate f ).
Then there exists a constant c > 0 only depending on p, q, and

max
�
kV'f kLp.D/

kV'f kL1.D/
;
kV'0f kL1.D/

kV'f kL1.D/

�
such that for any g 2Mp;p.R/ it holds that

inf
˛2R
kV'f � e

i˛V'gkLp.D/ �

c � .1C Cpoinc.p;D; jV'f j
p// � kjV'f j � jV'gjkD1;4p;q.D/

:

It remains to interpret the weighted Poincaré constants Cpoinc.p;D; jV'f j
p/

and Cpoinc.p;C; jV'f jp/. In Appendix B we prove the following result.

THEOREM 5.10. Let p 2 Œ1; 2�. For every connected domain D � R2 (D D C is
allowed!) and every f 2 S 0.R/, it holds that

Cpoinc.p;D; jV'f j
p/ �

4p

hp;D.f /
;

where hp;D.f / is defined as in Definition 2.8.
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Combining Theorem 5.10 with Theorem 5.8 we obtain the following fundamen-
tal stability result.

THEOREM 5.11. Let p 2 Œ1; 2/ and q 2 . 2p
2�p

;1/. Suppose that f 2Mp;p.R/ is
such that its Gabor transform V'f is centered (otherwise we could translate and
modulate f ). Then there exists a constant c > 0 only depending on p, q, and the
quotient kf kMp;p.R/=kf kM1;1.R/ such that for any g 2Mp;p.R/ it holds that

dMp;p.R/.f; g/ � c � .1C hp.f /
�1/ � kjV'f j � jV'gjkD1;4p;q

:

Combining Theorem 5.10 with Theorem 5.9, we obtain the following funda-
mental local stability result.

THEOREM 5.12. Let p 2 Œ1; 2/ and q 2 . 2p
2�p

;1/. Suppose that D � C satisfies
the assumptions of Proposition 4.7. Suppose that f 2 Mp;p.R/ is such that its
Gabor transform V'f is centered (otherwise we could translate and modulate f ).
Then there exists a constant c > 0, only depending on p, q, and

max
�
kV'f kLp.D/

kV'f kL1.D/
;
kV'0f kL1.D/

kV'f kL1.D/

�
such that for any g 2Mp;p.R/ it holds that

inf
˛2R
kV'f � e

i˛V'gkLp.D/ �

c � .1C hp;D.f /
�1/ � kjV'f j � jV'gjkD1;4p;q.D/

:

Remark 4.8, together with Proposition 5.7 and Theorem 5.10, gives us a slightly
different version of the stability result in Theorem 5.12, where we can drop the
assumptions on the domain D altogether.

THEOREM 5.13. Let p 2 Œ1; 2/ and q 2 . 2p
2�p

;1/. Suppose that f 2Mp;p.R/ is
such that its Gabor transform V'f is centered (otherwise we could translate and

modulate f ), and let ı WD zıD.V'f / as defined in (4.11) and � WD kV'f kLp.D/
kV'f kL1.D/

.
Then there exists a constant c > 0 only depending on p and q such that for any
g 2Mp;p.R/ it holds that

inf
˛2R
kV'f � e

i˛V'gkLp.D/ �

c � .1C hp;D.f /
�1/ �

�
1C

�p

ı2

�
� kjV'f j � jV'gjkD1;4p;q.D/

:

As a consequence, we get the following multicomponent-type stability result.

COROLLARY 5.14. Let p 2 Œ1; 2/ and q 2 . 2p
2�p

;1/, and let D be partitioned in
subdomains D1; : : : ;Ds , i.e.,

Di � D open; Di \Dj D ¿ for i ¤ j; and
s[
iD1

Di D xD:
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Suppose that f 2 Mp;p.R/ is such that its Gabor transform V'f is centered
(otherwise we could translate and modulate f ). Let

B WD max
iD1;:::;s

.1C hp;Di .f /
�1/ �

�
1C

�
p
i

ı2i

�
where we set ıi WD zıDi .V'f / as defined in (4.11) and

(5.22) �i WD
kV'f kLp.Di /

kV'f kL1.Di /
:

Then there exists a constant c > 0 only depending on p and q such that for any
g 2Mp;p.R/ it holds that

sX
iD1

inf
˛i2R
kV'f � e

i˛V'gkLp.D/ � c � B � kjV'f j � jV'gjkD1;4p;q.D/
:

Appendix A The STFT Does Phase Retrieval
In this section we present two remarkable properties of the Gabor transform.

First we show that by multiplication with a function � (which is independent of the
signal f ) the Gabor transform V'f becomes an entire function (compare to [32,
prop. 3.4.1]).

THEOREM A.1. Let ´ WD xC iy 2 C and let �.´/ WD e�.
j´j2

2
�ixy/. Then for every

f 2 S 0.R/ the function ´ 7! �.´/ � V'f .x;�y/ is an entire function.

PROOF. For fixed f define F.´/ WD �.´/ � V'f .x;�y/. Since any tempered
distribution is a derivative of finite order of a continuous function of polynomial
growth [29, theorem 8.3.1.], we can find a function h with these properties such
that

F.´/ D �.´/ �

�
dk

dtk
h.�/; e��. ��x/

2

e2� iy�
�
S0.R/�S.R/

D .�1/k�.´/

Z
R

h.t/
dk

dtk

�
e��.t�x/

2

e2� iyt�dt
for some k 2 N. With g.t; ´/ WD e��.t�x/

2

e2� iyt we get
@

@t
g.t; ´/ D �2�.t � ´/g.t; ´/:

A simple induction argument yields that any higher derivative of g w.r.t. t is of
the form p.t � ´/ � g.t; ´/ where p is a polynomial. Since for any t the function
´ 7! �.´/g.t; ´/ is holomorphic, so is the integrand of

F.´/ D

Z
R

.�1/kh.t/�.´/p.t � ´/g.t; ´/dt:
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To conclude that F is an entire function, it suffices to show that for any bounded
disc D � C centered at the origin, there is an integrable function uD such that the
integrand is bounded by uD uniformly for all ´ 2 D (see [23, IV theorem 5.8]).
Let r be the radius of such a disc D; then for any ´ D x C iy 2 D the estimate

e��.t�x/
2

� gD.t/ WD

(
e�

�
4
t2 ; jt j � 2r;

1; otherwise;

holds. Furthermore, there is a polynomial zp such that p.t � ´/ � zp.t/ for all
´ 2 D. Therefore

jh.t/�.´/p.t � ´/g.t; ´/j � sup
´2D

j�.´/jh.t/ zp.t/gD.t/ DW uD.t/:

Since gD decays exponentially and h and zp each have polynomial growth, we get
the desired result. �

The following theorem states that the Fourier transform of the spectrogram turns
out to be the product of the ambiguity functions of the window g and the signal f
(see [18, 19]). This result allows us to write down a reconstruction formula for our
problem.

We will present a proof of the statement for the case where f is a tempered
distribution. To that end we first of all have to give a meaningful definition of Af
for f a tempered distribution.

For any F W R2 ! C we define two linear transforms by

(A.1) TF.x; y/ WD F.x; x � y/ and SF.x; y/ WD F.y; x/:

Clearly T �1 D T and S�1 D S hold. For F 2 S 0.R2/ let TF 2 S 0.R2/ be
defined by

.TF;‚/S0.R2/�S.R2/ WD .F; T‚/S0.R2/�S.R2/;

and SF 2 S.R2/ analogously.
Note that this notation makes sense: If F is a regular tempered distribution we

have

.TF;‚/ D

Z
R

Z
R

F.x; y/T‚.x; y/dx dy D

Z
R

Z
R

TF.x; y/‚.x; y/dx dy

since T �1 D T and T describes a linear coordinate transform with Jacobean de-
terminant �1.

For f 2 S 0.R/ we can define a tempered distribution by Af WD S ı F1 ı
T
�
f ˝ xf

�
, where F1 denotes the Fourier transform w.r.t. the first variable of a

bivariate tempered distribution, i.e.,

.F1F;‚/S0.R2/�S.R2/ D
�
F; .x; y/ 7!

Z
R

‚.t; y/e2� ixt dt

�
S0.R2/�S.R2/

:
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We call Af the ambiguity function of f . For f 2 S.R/ the calculation

(A.2) Af .x; y/ D
�
F1 ı T .f ˝ xf /

�
.y; x/ D

Z
R

f .t/f .t � x/e�2� iyt dt

shows that Af is indeed an extension of the definition of the ambiguity function
(see Theorem 2.3).

In the following F will denote the Fourier transform of bivariate functions. By
duality F can be defined on tempered distributions:

.FF;‚/S0.R2/�S.R2/ D�
F; .x; y/ 7!

Z
R

Z
R

‚.s; t/e2� i.xsCyt/ds dt

�
S0.R2/�S.R2/

:

THEOREM A.2. Let f 2 S 0.R/ and g 2 S.R/; then F jVgf j2 D SAf � SAg,
i.e.,

(A.3) .F jVgf j2; ‚/S0.R2/�S.R2/ D .SAf; SAg �‚/S0.R2/�S.R2/
holds for all ‚ 2 S.R2/.

PROOF. First note that Vgf has at most polynomial growth (see [32, theorem
11.2.3.]). So jVgf j2 also has polynomial growth and therefore is in S 0.R2/, and
its Fourier transform is well-defined.

To simplify notation we will use duality brackets without explicitly stating in
which spaces we take duality. From the context it will be clear if we mean duality
either in S 0.R/�S.R/ or in S 0.R2/�S.R2/. Since compactly supported functions
are dense in S.R2/ and F W S.R2/! S.R2/ is unitary, it suffices to show�

F jVgf j2;F‚
�
D .SAf; SAg � F‚/

for all ‚ 2 C1c .R
2/, where we denote by C1c .R

2/ the space of infinitely often
differentiable functions on R2 with compact support.

For the moment let us assume that g is also compactly supported. The spectro-
gram can be written as

jVgf .x; y/j
2
D .f; e�2� iy�

xg. � � x// � .f; e�2� iy�xg. � � x//

D .f ˝ xf ; .s; t/ 7! e�2� iys
xg.s � x/e2� iytg.t � x//:

We obtain

.F.jVgf j2/;F‚/ D
Z
R

Z
R

jVgf j
2‚.x; y/dx dy

D

Z
R

Z
R

‚.x; y/.f ˝ xf ; .s; t/

7! e�2� iys
xg.s � x/e2� iytg.t � x//dx dy:

(A.4)
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What we want to do next is to interchange integration and evaluation by the
distribution f ˝ xf in the equation above. To this end we approximate the integral
by a sequence of Riemann sums and use the linearity of f ˝ xf .

Let functions Jn for n 2 N and J be defined by

Jn.s; t/ WD n
�2

X
k;l2Z

‚

�
k

n
;
l

n

�
e�2� i l

n
s
xg

�
s �

k

n

�
e2� i l

n
tg

�
t �

k

n

�
;

J.s; t/ WD

Z
R

Z
R

‚.x; y/e�2� iys
xg.s � x/e2� iytg.t � x/dx dy:

For M > 0 such that supp‚ � Œ�M=2;M=2�2 and suppg � Œ�M=2;M=2�,
clearly both suppJn and suppJ are subsets of Œ�M;M�2. Furthermore, the in-
dices k and l in the definition of Jn will in fact only run over the finite set Z \
Œ�Mn;Mn�.

Note that (A.4) is an integral of a continuous and compactly supported function
and therefore

(A.5) .F jVgf j2;F‚/ D lim
n!1

.f ˝ xf ; Jn/

holds. Clearly Jn converges to J pointwise. To interchange taking the limit and
evaluation by f ˝ xf we will show that Jn converges to J w.r.t. Schwartz space
topology, i.e.,

sup
s;t

ˇ̌̌̌
sˇ1 tˇ2

@˛1C˛2

@s˛1@t˛2
.Jn.s; t/ � J.s; t//

ˇ̌̌̌
goes to zero for any ˛1; ˛2; ˇ1; ˇ2 2 N [ f0g.

The polynomial factor can be omitted as there is a mutual compact support of
.Jn/n2N and J . Using D WD @˛1C˛2

@s˛1@t˛2
, let ‰ be defined by

‰.x; y; s; t/ WD D.e�2� iys
xg.s � x/e2� iytg.t � x//:

Then obviously

DJ.s; t/ D

Z
R

Z
R

‚.x; y/‰.x; y; s; t/dx dy;

DJn.s; t/ D n
�2
X
k;l

‚

�
k

n
;
l

n

�
‰

�
k

n
;
l

n
; s; t

�
:

Again for any fixed .s; t/ the values DJn.s; t/ can be interpreted as Riemann ap-
proximations for the integral DJ.s; t/, and we can infer pointwise convergence.
By showing that .DJn/n2N is equicontinuous on the compact set Œ�M;M�2, we
can conclude that DJn ! DJ uniformly. Since ‰ is a smooth function there
exists a c > 0 such that

j‰.x; y; s; t/ �‰.x; y; s0; t 0/j � cj.s; t/ � .s0; t 0/j
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for all .x; y; s; t/; .x; y; s0; t 0/ 2 Œ�M=2;M=2�2 � Œ�M;M�2. Equicontinuity
holds by the estimate

jDJn.s; t/ �DJn.s
0; t 0/j

� n�2
X
k;l

ˇ̌̌̌
‚

�
k

n
;
l

n

�ˇ̌̌̌ˇ̌̌̌
‰

�
k

n
;
l

n
; s; t

�
�‰

�
k

n
;
l

n
; s0; t 0

�ˇ̌̌̌
� n�2

X
k;l

k‚kL1.R2/ � c � j.s; t/ � .s
0; t 0/j

� k‚kL1.R2/M
2cj.s; t/ � .s0; t 0/j

where we used the fact that for every n the indices run over the finite set jkj; jl j �
Mn
2

.

Defining h� .�/ WD g.�/xg. � � �/ we obtain

J.s; t/ D ŒF2‚. � ; s � t / � hs�t .�/�.s/;

and therefore

TJ.s; t/ WD J.s; s � t / D ŒF2‚. �; t / � ht .�/�.s/:

The Fourier transform of the first variable gives

F1 ı TJ.s; t/ D F‚.s; t/ � bht .s/:
Now bht turns out to be the ambiguity function of g:

bht .s/ D F.g.�/xg. � � t //.s/ D Ag.t; s/:

Putting it all together, we get

.F jVgf j2;F‚/ D .f ˝ xf ; J /
D .T .f ˝ xf /; TJ / D .F1 ı T .f ˝ xf /;F1 ı TJ /
D .F1 ı T .f ˝ xf /; SAg � F‚/ D .SAf; SAg � F‚/:

It remains to prove that the result holds true for any Schwartz function g. We will
do this by a density argument: For g 2 S.R/ one can find a sequence .gn/n2N �

S.R/ of compactly supported functions converging to g.
Since for any f 2 S 0.R/ there exist C > 0 and L > 0 such that

j.f; h/j � C
X
˛;ˇ�L





 d˛d �˛ ��ˇ � h.�/�





L1.R/

for all h 2 S.R/
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(see [29, chapter 8.3]) we can estimate

jVg�gnf .x; y/j D
ˇ̌�
f; e2� iy�.gn � g/. � � x/

�ˇ̌
� C

X
˛;ˇ�L





 d˛d �˛ ��ˇe2� iy�.gn � g/. � � x/
�




L1.R/

D C
X
˛;ˇ�L





 d˛d �˛ �.� C x/ˇe2� iy�.gn � g/.�/
�




L1.R/

� p.x; y/ � max
˛;ˇ�L





 d˛d �˛ �ˇ .gn.�/ � g.�//





L1.R/

for some polynomial p.
In particular, for any compact K � R2 there is a constant CK independent of n

such that the function on the right-hand side of the inequality above can be bounded
by CK for all .x; y/ 2 K.

The STFT is continuous; therefore the function

jVgnf .x; y/j � jVgn�gf .x; y/j C jVgf .x; y/j

can also be bounded by a constant independent of n on any compactK. Obviously
jVgnf j

2 converges to jVgf j2 pointwise. By dominated convergence we get

lim
n!1

.F jVgnf j2;F‚/ D lim
n!1

Z
R

Z
R

jVgnf .x; y/j
2‚.x; y/dx dy

D

Z
R

Z
R

jVgf .x; y/j
2‚.x; y/dx dy D .F jVgf j2;F‚/:

Since g 7! g ˝ xg is continuous as a mapping from S.R/ to S 0.R2/ and so
are S , F1, and T on S.R2/, so is their composition Ag D S ı F1 ı T .f ˝ xf /,
which implies convergence of .Agn/n2N to Ag . Multiplication by a fixed Schwartz
function is again a continuous operator on S.R2/; therefore

�(A.6) lim
n!1

.SAf; SAgn � F‚/ D .SAf; SAg � F‚/:

As a consequence of Theorem A.2, we obtain that a window function g whose
ambiguity function has no zeros allows phase retrieval.

THEOREM A.3. Let g 2 S.R/ be such that its ambiguity function Ag has no
zeros. Then for any f; h 2 S 0.R/ with jVgf j D jVghj, there exists ˛ 2 R such
that h D ei˛f . If f 2 S.R/, then

(A.7) f .t/ � f .0/ D F�12 .SF jVgf j2=Ag/.t; t/; t 2 R;

holds true, where S is defined by (A.1) and F�12 denotes the inverse Fourier trans-
form w.r.t. the second variable.
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PROOF. For ‚ 2 C1c .R
2/ so is the function .SAg/�1 � ‚. By Theorem A.2,

the tempered distributions Af and Ah coincide on the dense subspace C1c .R
2/

and are therefore equal. For arbitrary �; 2 S.R/ we get�
Af; S ı F1 ı T .� ˝ x /

�
D .f ˝ xf ; � ˝ x / D .f; �/ � .f;  /

and further
.f; �/ � .f;  / D .h; �/ � .h;  /:

The choice  D � implies j.f; �/j D j.h; �/j.
Let  be such that .h;  / ¤ 0; then we obtain the equation

.h; �/ D
.f;  /

.h;  /
.f; �/:

Since the fraction has modulus one the statement holds.
For f 2 S.R/ equation (A.3) implies

SF jVgf j2 D Af �Ag

pointwise. Looking at (A.2) shows f .t/ � f .t � x/ D F�12 Af .x; t/. Combining
these observations yields

f .t/ � f .0/ D F�12 Af .t; t/ D F�12 .SF jVgf j2=Ag/.t; t/: �

Remark A.4. If we restrict the signals f and h to be in L2.R/, the ambiguity func-
tion Ag can in fact vanish on a set of measure zero and the statement of Theorem
A.3 still holds.

By calculating the ambiguity function for the Gaussian, we can conclude that
the Gabor transform does phase retrieval:

LEMMA A.5. Let '.�/ D e�� �
2

be the Gaussian. Then we have

A'.x; y/ D c � e�� ixy
� e��=2�.x

2Cy2/

for some positive constant c.

PROOF. Using the substitution � D t � x=2 gives

A'.x; y/ D
Z
R

e��t
2

e��.t�x/
2

e�2� iyt dt

D

Z
R

e��.�Cx=2/
2

e��.��x=2/
2

e�2� iy.�Cx=2/2 d�

D e�� iyxe��=2�x
2

Z
R

e�2��
2

e�2� iy� d�:
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It is well-known that the Fourier transform of a Gaussian is again a Gaussian. We
will still do the calculation to get the constants: Let g.�/ WD e�2� �

2

. Then

yg0.y/ D �

Z
R

2� it � e�2�t
2

e�2� iyt dt D
i
2
� yg0.y/ D ��y � yg.y/:

Therefore with c D
R

R g > 0, we have yg.y/ D c � e��=2�y
2

. �

Therefore by Theorem A.3 the Gabor transform does phase retrieval:

COROLLARY A.6. Let '.�/ WD e�� �
2

be the Gaussian window. Let f; h 2 S 0.R/
be such that jV'f j D jV'hj; then there exists ˛ 2 R such that h D ei˛f .

Appendix B Poincaré and Cheeger Constants
In this section we relate the Poincaré constant to a geometric quantity, the so-

called Cheeger constant. This concept goes back to Jeff Cheeger [16]. We will
further show that on a bounded domain that is equipped with a weight arising from
a Gabor measurement there always holds a Poincaré inequality. Moreover, we find
that when the weight w is chosen to be a Gaussian, there exists a finite constant
C > 0 independent of R > 0 such that

Cpoinc.p; BR.0/; w/ � C:

B.1 Cheeger Constant
The goal is to estimate the Poincaré constant from above in terms of the Cheeger

constant. First, recall the definition of Lipschitz and locally Lipschitz functions:

DEFINITION B.1. Let A � Rd and f W A! R. Then f is called
(i) Lipschitz (on A) if there exists a C > 0 such that

jf .x/ � f .y/j � C jx � yj for all x; y 2 A;

(ii) locally Lipschitz (on A) if f is Lipschitz on any compact subset of A.

Let Hd�1 denote the .d � 1/-dimensional Hausdorff measure. A definition and
some basic properties about Hausdorff measures as well as a proof of the following
formula can be found in [25, chap. 3.4.3].

THEOREM B.2 (Coarea formula, or change-of-variables formula). Let f W Rd !
R be Lipschitz and g W Rd ! R be an integrable function. Then the restriction
gjf �1ftg is integrable w.r.t. Hd�1 for almost all t 2 R andZ

Rd
g.x/jrf .x/jdx D

Z
R

Z
f �1ftg

g.s/dHd�1.s/dt:

Later, in Proposition B.5, we use the coarea formula to establish a link between
the Poincaré’s inequality and the Cheeger constant. However, we will need the
coarea formula to hold under slightly different assumptions:
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LEMMA B.3. LetD � Rd be an open set andw a nonnegative, integrable function
onD. Let u be a measurable and real-valued function and assume that there exists
a set E � D such that

(i) u restricted to D nE is locally Lipschitz,
(ii) there exists a sequence D1 � D2 � � � � � D n E of bounded open sets

such that
S
nDn D D nE and Dn � D nE for all n 2 N, and

(iii) w vanishes for Hd�1 almost all x 2 E.

Then Z
D

w.x/jru.x/jdx D

Z
R

Z
u�1ftg

w.s/dHd�1.s/dt:

PROOF. By extending w by 0 outside ofD we consider w as a function defined
on the whole space Rd . By Assumptions (i) and (ii), the restriction of u on the
compact setDn is Lipschitz and thus also u restricted toDn is Lipschitz and there-
fore has an extension un that is Lipschitz on Rd (compare [25, chap. 3.1.]). With
wn WD w � �Dn we can apply Theorem B.2 on f D un and g D wn for any n and
obtain

(B.1)
Z

Rd
wn.x/jrun.x/jdx D

Z
R

Z
u�1n ftg

wn.s/dHd�1.s/dt:

Since un.x/ D u.x/ for x 2 Dn and Dn is open, Rademacher’s theorem implies
run.x/ D ru.x/ makes sense for almost all x 2 Dn. By monotone convergence
we can take the limit n!1 in the left-hand side of equation (B.1):

lim
n

Z
Rd
wn.x/jrun.x/jdx D lim

n

Z
Dn

w.x/jru.x/jdx

D

Z
DnE

w.x/jru.x/jdx:

Assumption (iii) in particular implies thatw vanishes for almost every x 2 E (w.r.t.
d -dimensional Lebesgue measure). Therefore we can conclude

lim
n

Z
Rd
wn.x/jrun.x/jdx D

Z
D

w.x/jru.x/jdx:
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Let us have a closer look at the right-hand side of equation (B.1) Since un and
u coincide on Dn, we have

lim
n

Z
R

Z
u�1n ftg

wn.s/dHd�1.s/dt D lim
n

Z
R

Z
u�1n ftg\Dn

w.s/dHd�1.s/dt

D lim
n

Z
R

Z
u�1ftg\Dn

w.s/dHd�1.s/dt

D

Z
R

Z
u�1ftg\.DnE/

w.s/dHd�1.s/dt;

where we again used monotone convergence. Assumption (iii) tells us that E is a
zero set w.r.t. w.�/dHd�1.�/, and so we finally obtain the claimed equality. �

We consider now a domainD � R2 that can be bounded or unbounded, together
with a nonnegative and integrable weight w. We define a measure � on D by

(B.2) �.C/ WD

Z
C

w.x/dx; C � D measurable w.r.t. Lebesgue measure.

For A � D a one-dimensional manifold, we use the notation

(B.3) �.A/ WD

Z
A

w.s/d�.s/;

where � denotes the surface measure on A. Furthermore, let us define a system of
subsets of D by

(B.4) C D C.D;w/ WD
�
¿ ¤ C � D openW @C \D is a one-dimensional
manifold and �.C/ � 1

2
�.D/

�
:

The Cheeger constant h w.r.t. D and w is defined by

(B.5) h D h.D;w/ WD inf
C2C

�.@C \D/

�.C/
:

Remark B.4. IfD is not connected, there is a component C ofD such that C 2 C.
Since @C \D D ¿ we clearly have h D 0 in that case.

For a measurable, real-valued function u on D we denote the sublevel, super-
level, and level sets of u by

St WD fx 2 DW u.x/ < tg; Ut WD fx 2 DW u.x/ > tg;
and At WD fx 2 DW u.x/ D tg:

In Proposition B.5 we will now establish a first connection between the Cheeger
constant and a Poincare-type inequality:

PROPOSITION B.5. Let D � R2 be a domain and w a weight on D. Let h denote
the Cheeger constant of D and w and let � be defined as in equation (B.2). Let u
be a nonnegative function on D and assume that there exists E � D such that
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conditions (i)–(iii) of Lemma B.3 hold. Let Ut and At denote the superlevel and
the level sets w.r.t. u. Furthermore, suppose that

(1) �.U0/ � 1
2
�.D/,

(2) At is a one-dimensional manifold for almost all t > 0,
(3) At D @Ut \D for almost all t > 0, and
(4) Ut is open for almost all t > 0.

Then the inequality

(B.6) h

Z
D

u.x/d�.x/ �

Z
D

jru.x/jd�.x/

holds true.

PROOF. Let � � .0;1/ be such that

At is a one-dimensional manifold and At D @Ut \D for all t 2 �

and that .0;1/ n � is of Lebesgue measure zero.
Applying Lemma B.3 and using the fact that H1 coincides with the surface

measure on one-dimensional manifolds gives usZ
D

jru.x/jw.x/dx D

Z 1
0

Z
At
w.s/dH1.s/dt D

Z
�

Z
At
w.s/dH1.s/dt

D

Z
�

�.At /dt D
Z
�

�.@Ut \D/dt;

where � is defined as in (B.3). Now we can estimateZ
D

jru.x/jd�.x/ �

Z
�\ft W�.Ut />0g

�.@Ut \D/
�.Ut /

� �.Ut /dt

� h

Z
�\ft W�.Ut />0g

�.Ut /dt D h
Z
.0;1/

�.Ut /dt

D h

Z
D

u.x/d�.x/: �

Before we prove the main result of this section, Theorem B.7, we need one more
lemma:

LEMMA B.6. Let D � R2 be a domain, w a weight on D, and p 2 Œ1; 2�. Then
for any F D uC iv 2 Lp.D;w/ \ L1.D;w/ and any a; b 2 R, we have

F � FwD 

pLp.D;w/ � 2p � �ku � akpLp.D;w/ C kv � bkpLp.D;w/�:

PROOF.
Step 1. Assume f 2 Lp.D;w/ \ L1.D;w/ is a real-valued function with

f wD D 0. We first show that

(B.7) kf kLp.D;w/ � 2kf C ckLp.D;w/
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for arbitrary c 2 R. This statement can be found in [22] but we still give a proof.
W.l.o.g. we may assume that c is positive. Let � be defined as in (B.2). Then we
have Z

fx2DWf .x/>0g

jf .x/jp d�.x/ �

Z
fx2DWf .x/>0g

jf .x/C cjp d�.x/

andZ
fx2DWf .x/<�2ag

jf .x/C cjp d�.x/ � 2�p
Z
fx2DWf .x/<�2cg

jf .x/jp d�.x/:

Furthermore, using
R
fx2DWf .x/�0gjf .x/jd�.x/ D

R
fx2DWf .x/>0gjf .x/jd�.x/ we

obtainZ
fx2DW�2c�f .x/�0g

jf .x/jp d�.x/ � .2c/p�1
Z
fx2DW�2c�f .x/�0g

jf .x/jd�.x/

� .2a/p�1
Z
fx2DWf .x/>0g

jf .x/jd�.x/

� 2p�1
Z
fx2DWf .x/>0g

jf .x/C cjpd�.x/:

Combining these estimates and noting 2p�1 C 1 � 2p, we see that the inequality
(B.7) holds.

Step 2. For any dimension d and p � 2 it holds that

kxk2 � kxkp for all x 2 Rd ;

where kxkpp WD
Pd
jD1jxj j

p. Using this inequality and applying (B.7) on u and v,
respectively, we obtain

kF � FwD k
p

Lp.D;w/
D

Z
D

�
.u.x/ � uwD/

2
C .v.x/ � vwD/

2
�p=2

d�.x/

�

Z
D

ˇ̌
u.x/ � uwD

ˇ̌p
C
ˇ̌
v.x/ � vwD

ˇ̌p
d�.x/

� 2p
Z
D

ju.x/ � ajp C jv.x/ � bjp d�.x/: �

Finally, we establish a weighted Poincaré inequality for certain meromorphic
functions. Looking at (B.6) it is not surprising that the corresponding Poincaré
constant can be controlled by the reciprocal of the Cheeger constant.

THEOREM B.7. Let D � R2 be a domain, w a weight on D, and p 2 Œ1; 2�.
Let h denote the Cheeger constant of D and w. Assume that h is positive. Then a
weighted Poincaré inequality holds and Cpoinc.D;w; p/ �

4p
h

, i.e.,

(B.8) kF � FwD kLp.D;w/ �
4p

h
krF kLp.D;w/

for all F 2 W 1;p.D;w/ \ L1.D;w/ \M.D/.
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PROOF. Let u and v denote the real and imaginary parts of F , and let � be
defined as in (B.2). Let mu be a median of u, i.e.,

�
�
Uumu

�
�
1

2
�.D/ and �

�
Sumu

�
�
1

2
�.D/;

where Uut and Sut denote super- and sublevel sets of u.
To see why such a number exists, observe that the mapping t 7! �.Uut / is

continuous and takes its values in the interval Œ0; �.D/�. Therefore, there has to be
a number mu such that �.Uumu/ D

1
2
�.D/ and since

�
�
Sumu

�
� �.D/ � �

�
Uumu

�
D
1

2
�.D/;

mu is a median of u.
Let mv be a median of v, defined analogously. By Lemma B.6 we get

(B.9)


F � FwD 

pLp.D;w/ � 2p � �ku �mukpLp.D;w/ C kv �mvkpLp.D;w/�:

We will only estimate the first term in the right-hand side of the inequality above.
The second one can be dealt with in the exact same way. Let uC and u� denote
the positive and the negative parts of the function u �mu. Then we have

 WD .u �mu/ � ju �muj
p�1
D u

p
C
� up�

and

k k
p

Lp.D;w/
D ku �muk

p

Lp.D;w/
D ku

p
C
kL1.D;w/ C ku

p
�kL1.D;w/:

We want to apply Proposition B.5 on both up
C

and up�. First, we check that the
assumptions (i)–(iii) of Lemma B.3 are satisfied:

(i). LetE denote the set of points x 2 D such that x is a pole of F . The restric-
tion of  on D n E is a smooth function and therefore locally Lipschitz.
Since for x; y 2 D nE we haveˇ̌

u
p
˙
.x/ � u

p
˙
.y/
ˇ̌
� j .x/ �  .y/j;

u
p
C

and up� are also locally Lipschitz on D nE.
(ii). Obviously, setting

Dn WD .D \ Bn.0// n
[
x2E

B1=n.x/

for n 2 N is a valid choice.
(iii). Since E is a discrete set, this property holds for any weight w.
Next we verify that Assumptions (1)–(4) of Proposition B.5 hold for up

C
and

up�: We write UCt , U�t , and U t for the superlevel sets of up
C

, up�, and  and
accordingly for the sublevel and level sets of the same functions.

(1). This property follows directly from the definition of  .
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(4). Since  is continuous on D n E, its super- and sublevel sets are open in
D nE. The set of poles E is discrete; therefore any open set inD nE also
is open in D. The property then follows by the observation that for t > 0

the following two equalities hold:

UCt D U t and U�t D S �t :

(3). Let x 2 @U t \D; then for any " > 0 the ball B".x/ contains points y; y0

such that .y/ > t and .y0/ � t . By continuity of , we infer .x/ D t ,
i.e., x 2 A t . Thus the inclusion @U t \D � At holds for all t .

Assume next that the set

J WD
˚
t 2 RW A t © @U t \D

	
is of positive measure. For t 2 J there exists an x 2 A t such that x …
@U t \D. Therefore for sufficiently small " > 0, we have B".x/\ U t D
¿, so  has a local maximum in x, which implies r .x/ D 0. Sard’s
theorem tells us that  .fx W r .x/ D 0g/ � J is a zero set, which con-
tradicts our assumption. This proves that A t D @U t \D for almost all
t 2 R. A similar argument shows that also A t D @S

 
t \D holds true for

almost all t .
The observation

@UCt \D D @U
 
t \D D A t D ACt ;

@U�t \D D @S
 
�t \D D A �t D A�t ;

concludes the argument.
(2). Clearly it suffices to show that A t is a one-dimensional manifold for al-

most all t 2 R.
Let t … J 0, where

J 0 WD
˚
t 2 R W 9x 2 A t s.t. r .x/ D 0

	
:

Again by Sard’s theorem J 0 is a set of measure zero. For arbitrary x 2
A t , by the implicit function theorem A t is locally the graph of a smooth
function that implies that both ACt and A�t are one-dimensional manifolds
for almost all t > 0.

Proposition B.5 can now be applied on up
C

and up�:

hku �muk
p

Lp.D;w/

D h

Z
D

u
p
C
.x/C up�.x/d�.x/

�

Z
D

jru
p
C
.x/j C jrup�.x/jd�.x/ D

Z
D

jr .x/jd�.x/:

(B.10)
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We want to show that ku � mukLp.D;w/ �
p
h
� krukLp.D;w/. For p D 1 we

are done. For any p > 1 we have

jr .x/j D pju.x/ �muj
p�1
jru.x/j:

Using Hölder’s inequality we obtainZ
D

jr .x/jd�.x/

D p

Z
D

ju.x/ �muj
p�1
� jru.x/jd�.x/

� p

�Z
D

ju.x/ �muj
.p�1/p0d�.x/

�1=p0
�

�Z
D

jru.x/jp d�.x/

�1=p
D pku �muk

p�1

Lp.D;w/
krukLp.D;w/:

(B.11)

Note that by Cauchy-Riemann equations we have for any x 2 D nE that

jrF.x/j D
p
2jru.x/j D

p
2jrv.x/j:

Combining estimates (B.9), (B.10), and (B.11) we finally obtain

kF � FwD k
p

Lp.D;w/
� 2p �

�p
h

�p Z
D

jru.x/jp C jrv.x/jp d�.x/

D 21Cp=2
�p
h

�p
krF k

p

Lp.D;w/
:

Since .2p=2C1/1=p � 23=2 < 4, inequality (B.8) holds true. �

B.2 Positivity of the Cheeger Constant for Finite Domains
The goal of this section is to prove the following statement:

THEOREM B.8. Let D � R2 be a bounded domain with Lipschitz boundary. Fur-
thermore, let f 2 S 0.R/ such that V'f has no zeros on @D and 1 � p < 1.
Then

hp;D.f / > 0:

To this end we will need the fact that in the definition of the Cheeger constant it
suffices to consider connected sets C .

LEMMA B.9. Let w be a nonnegative weight on a domain D � R2, and let h
denote the Cheeger constant (see equation (B.5)). Let C be defined as in equation
(B.4). Then

(B.12) h D inf
C2C

C connected

R
@C w d�R
C w

:

PROOF. The inequality

h D inf
C2C

C connected

R
@C w d�R
C w
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is trivial.
It is an easy exercise to see that for positive numbers .al/l2N and .bl/l2N the

following inequality holds:

(B.13)
P
l alP
l bl
� inf

l

al

bl
:

For arbitrary C 2 C, since C is open, we can write C as a disjoint union of at most
countably many connected, open sets Cl ; l 2 N. Applying inequality (B.13) on
al D

R
@Cl\D

w d� and bl D
R
Cl
w givesR

@C\D w d�R
C w

D

P
l

R
@Cl\D

w d�P
l

R
Cl
w

� inf
l

R
@Cl\D

w d�R
Cl
w

� inf
C2C

C connected

R
@C\D w d�R

C w
:

Taking the infimum over all C 2 C yields the desired result. �

First we will show that Theorem B.8 holds in the case w � 1. Recall that for
D � Rd open, a function u 2 L1.D/ is of bounded variation (u 2 BV.D/) if

sup
�2C1c .D;Rd /W j�j�1

Z
D

u div� � 1;

where C 1c .D;R
d / denotes the set of continuously differentiable functions from D

to Rd whose support is a compact subset of D. We will make use of the following
properties of functions of bounded variation (see [25, chap. 5] for details): For any
u 2 BV.D/ there exists a Radon measure � on D and a �-measurable function
� W D ! Rd such that j� j D 1 �-a.e. andZ

D

u div� D �
Z
D

� � � d� for all � 2 C 1c .D;R
d /:

We will use the notation jruj D � in the following. Equipped with the norm

k�kBV.D/ WD k�kL1.D/ C jr�j.D/;

BV.D/ becomes a Banach space.

To show that Theorem B.8 holds in the casew � 1, let us consider the functional

(B.14) F W u 7! jruj.D/; u 2 BV.D/;

and the minimization problem

(B.15) minimize F in V WD
�
u 2 BV.D/W kukL1.D/ D 1; jsuppuj �

1

2
jDj

�
:
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Proving that h.D; 1/ > 0 by showing that (B.15) has a solution is inspired by [14,
34], where they considered a slightly different problem, namely proving positivity
of the quantity

inf
C�D open, @C smooth

`.@C /

jC j
:

Note that this situation corresponds to estimating Poincaré constants for functions
that satisfy Dirichlet conditions:

kukLp.D/ � C krukLp.D/ for all u vanishing on @D:

PROPOSITION B.10. Let D � R2 be a bounded and connected Lipschitz domain,
and let C WD fC � DW @C \D is smooth; jC j � 1

2
jDjg. Let F and V be defined

as in (B.14)–(B.15). Then
(i) There exists u� 2 V such that

F.u�/ D inf
u2V

F.u/ > 0:

(ii) For any C 2 C we have F.�C / D `.@C \D/.

PROOF.
(i) Choose a minimizing sequence .un/n2N � V , i.e.,

lim
n

F.un/ D inf
u2V

F.u/:

Then .un/n2N is bounded in BV.D/ and therefore by [25, chap. 5.2.3,
theorem 4] there is a subsequence that we still call .un/n2N and a u� 2
BV.D/ such that un ! u� in L1.D/. Obviously ku�kL1.D/ D 1.

To show that u� 2 V , it remains to verify that jsuppu�j � 1
2
jDj.

Assume that jsuppu�j > 1
2
jDj. Then for " > 0 sufficiently small we

have jD"j > 1
2
jDj, where we set D" WD fxW ju�.x/j > "g. Since L1-

convergence implies almost uniform convergence, there must be a setE" �
D such that

jE"j <
1

2
jDj � jD"j and un ! u� uniformly on D nE":

In particular, convergence is uniform on D" n E". Therefore there exists
N 2 N such that jun.x/ � u�.x/j < "=2 for all x 2 D" n E". Applying
the inverse triangle inequality yields jun.x/j > "=2 for these n and x. By
construction we have jD" nE"j > 1

2
jDj, which contradicts the assumption

that .un/n2N � V .
By [25, chap. 5.2.1, theorem 1] the functional F is lower-semicontinu-

ous w.r.t. L1-norm. Thus we obtain

inf
u2V

F.u/ � F.u�/ � lim inf
n

F.un/ D lim
n

F.un/ D inf
u2V

F.u/:

It remains to show that F.u�/ is strictly positive. Assume F.u�/ D 0.
Then jru�j is the zero measure, which by [4, prop. 3.2(a)] amounts to u�
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being constant on the connected set D. Since there is no constant function
u� such that

jsuppu�j �
1

2
jDj and ku�kL1.D/ D 1;

we have a contradiction.
(ii) Any C 2 C can be extended to a set C 0 � C such that

C 0 \D D C and @C 0 is smooth:

Note that if @C � D we can choose C 0 D C . Since C 0 has a smooth
boundary, the length of @C 0 \D can be measured by the total variation of
the gradient of �C 0 , i.e.,

jr�C 0 j.D/ D Hn�1.@C 0 \D/;

see [25, chap. 5.1, exam. 2]. Therefore we obtain

jr�C j.D/ D jr�C 0 j.D/ D Hn�1.@C 0 \D/

D Hn�1.@C \D/ D `.@C \D/: �

As a direct consequence we obtain the following theorem:

THEOREM B.11. Let D � R2 be a bounded Lipschitz domain. Then

h.D; 1/ > 0;

where h.D; 1/ is defined as in (B.5).

PROOF. We use the notation of Proposition B.10. Since F.�C / D `.@C \D/

for any C 2 C, we obtain

`.@C \D/

jC j
D

F.�C /
k�C kL1.D/

D F
�
k�C k

�1
L1.D/

� �C
�
� F.u�/ > 0: �

Let us get to the general case where w emerges from a Gabor measurement,
i.e., w D jV'f jp. On a bounded domain D one can construct a rather simple,
equivalent weight wr � w, which we will analyze.

PROOF OF THEOREM B.8. The idea of the proof is to construct a weight equiv-
alent to jV'f jp that locally is either constant or looks like ´ 7! j´jq for some
positive number q. We then seek to exploit results on Cheeger constants for the
case w � 1 as well as isoperimetric inequalities w.r.t. weights of the form j´jp.

Up to multiplication with a nonzero function � and a reflection in the plane, the
function V'f is an entire function (see Theorem 2.4) and therefore can only have
a finite number of zeros .�i /NiD1 in D. We have for every ´ D x C iy 2 D that

(B.16) V'f .´/ D

NY
iD1

.x́ � x�i /
mi � g.x́/;
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where mi 2 N denotes the multiplicity of the zero �i , and g is a continuous func-
tion without zeros on xD. Due to the compactness of xD the function ´ 7! jg.x́/j
assumes a nonzero minimum and a maximum on xD.

For r > 0 let Dr0 WD
SN
iD1Br.�i / and define

wr.´/ WD

(
1; ´ 2 D nDr0;

j´ � �i j
mi �p; ´ 2 Br.�i / for some i 2 f1; : : : ; N g:

This definition is ambiguous if ´ 2 Br.�i / \ Br.�j / for i ¤ j . But clearly there
is a r0 > 0 such that all these intersections will be empty for r < r0.

For ı > 0 let us define the set

Dı WD fx 2 D W dist.x; @D/ < ıg:

Obviously for ı ! 0 we have that jDı j ! 0. Since V'f has no zeros on the
boundary @D we can choose ı such that

jDı j �
1

2
jDj and

N[
iD1

Bı.�i / \Dı D ¿:

From now on we consider the weight wr for fixed 0 < r < minfr0; ı; 1g. Since
wr � jV'f j

p in D and by Lemma B.9 it suffices to show that the quantityR
@C wrd�R
C wr

can be uniformly bounded from below by a positive constant for all connected (due
to Lemma B.9), open sets C � D with smooth boundary such that

R
C jV'f j

p �
1
2

R
C jV'f j

p.
Let us fix a C with these properties. We can now look at the following two cases

separately:

Case A. `.@C \D n
SN
iD1Br=2.�i // � r=2.

Case B. `.@C \D n
SN
iD1Br=2.�i // < r=2.

Within Case B we further distinguish the following subcases:

Case B.1. @C \ @D ¤ ¿.

Case B.2. @C \ @D D ¿ and C \ Br=2.�i / ¤ ¿ for some i .

Case B.3. @C \ @D D ¿ and C \
SN
iD1Br=2.�i / D ¿.

ad A. Letm WD maxifmig. Sincewr.´/ � .r=2/mp for ´ 2 Dn
SN
iD1Br=2.�i /,

we get the estimate R
@C\D wrd�R

C wr
�
.r=2/mpC1R

D wr
:
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ad B.1. By construction we haveC � Dı . Sincewr � 1 inDı and jC j � 1
2
jDj

we obtain R
@C\D wrd�R

C wr
� h.D; 1/:

By Theorem B.11 h.D; 1/ is positive.
ad B.2. We can infer that C � Br.�i / for suitable i and let q D mip. Let us

assume for simplicity that �i D 0. Let � and � be defined as in (B.2) and (B.3)
w.r.t. the weight j�jmip.
Since

�.B2r.2r// � �.Br.0// � �.C/

by continuity of s 7! �.Bs.s//, there exists s 2 .0; 2r� such that �.Bs.s// D
�.C/. We can now appeal to a result about weighted isoperimetric problems [21,
see theorem 3.16] that guarantees �.@Bs.s// � �.@C /. Since

�.Bs.s// � s�.
p
2s/q and �.Bs.s// � 2s

2�.2s/q;

we obtain
�.@C /

�.C /
�
�.@Bs.s//

�.Bs.s//
& s�1:

The function s�1 is bounded from below by a positive constant on the interval
.0; 2r�, and we are done in this case.

ad B.3. We estimateR
@C\D wrd�R

C wr
�
.r=2/mp`.@C /

jC j
�
.r=2/mp

jDj1=2

`.@C /

jC j1=2
:

By the isoperimetric inequality the fraction `.@C /=jC j1=2 has a positive lower
bound independent of C . �

B.3 Cheeger Constant of a Gaussian
In this subsection we will study the Cheeger constant of the Gaussian ' D e��:

2

on disks centered at 0.

THEOREM B.12. For p 2 Œ1;1/ there exists a constant ı > 0, depending on p
but independent of R > 0, such that

hp;BR.0/.'/ � ı:

PROOF. By Lemma A.5 there exists a positive constant r such that

jV''.x; y/j
p
D re�p�=2.x

2Cy2/:

For q � �=2 let wq.x; y/ WD e�q.x
2Cy2/. Proving the statement amounts to

showing that h.BR.0/; wq/ is uniformly bounded away from zero for any fixed
q � �=2. The restriction is, however, not necessary and it suffices to assume
q > 0.
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Let ˇ > 0 be such that
R

R2 ˇwq D 1. For C � R2 and A a one-dimensional
manifold, we will use the notations

�.C/ WD ˇ

Z
C

wq and �.A/ WD ˇ

Z
A

wq d�;

where � denotes the surface measure on A. For R > 0 let us define

CR WD
�
C � BR.0/ open, connectedW @C \ BR.0/ is smooth
and �.C/ � 1

2
�.BR.0//

�
;

CiR WD fC 2 CRW @C \ @BR.0/ D ¿g;

CbR WD fC 2 CRW @C \ @BR.0/ ¤ ¿g:

Clearly CR D CiR [ CbR.

Our proof will heavily rely on the fact that on probability spaces with log-
concave measures an isoperimetric inequality holds true [9]; i.e., there exists c > 0
such that

(B.17) �.@C / � cI.�.C // for all C � R2 with smooth boundary;

where I WD 
 ı ��1 with


.t/ WD
1
p
2�
e�x

2=2 and �.t/ WD

Z t

�1


.s/ds:

The function I W Œ0; 1� ! Œ0; 1=
p
2�� is strictly positive on .0; 1/ and satisfies

qI.0/ D I.1/ D 0. An elementary calculation yields I 00.t/ D �1=
.��1.t// �
0; therefore I is concave. Since I

�
1
2

�
D 1=

p
2� we have for any C such that

�.C/ � 1
2

that

(B.18) �.@C / � c � I.�.C // � c �

r
2

�
�.C /:

Note that since R2 has no boundary, equation (B.18) tells us that h.R2; wq/ �
c
p
2=� .

First let C 2 CiR. Since �.C/ � 1
2
�.BR.0// �

1
2

, we have

�.@C \ BR.0//

�.C /
D
�.@C /

�.C /
� c �

r
2

�
:

Thus it remains to look at sets C 2 CbR.
For R > 0 let � D �.R/ > 0 be such that �.B�.0// D 3

4
�.BR.0//. Since

C is connected, there is exactly one connected component A0 of @C such that
A0 \ @BR.0/ ¤ ¿.
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We will now have a look at the ratio .R � �.R//=R. Let R < 1=
p
q and let

˛ WD
p
3=4e; then

�.B˛R.0// D ˇ

Z
B˛R.0/

e�qj´j
2

d´

� ˇ˛2R2� D e˛2 � ˇe�1R2� � e˛2�.BR.0// D
3

4
�.BR.0//;

and thus we obtain for R 2 .0; 1=
p
q/

R � �.R/

R
� 1 � ˛ > 0:

Note that .R��.R//=R is a nonnegative and continuous function of R > 0. Since
�.R/ converges to a finite limit for R!1, there exists a � > 0 that only depends
on q such that

(B.19) R � �.R/ � �R for all R > 0:

We will now distinguish three cases:

Case A. A0 \ B� ¤ ¿.

Case B. A0 \ B� D ¿ and C0 \ B� ¤ ¿.

Case C. A0 \ B� D ¿ and C0 \ B� D ¿.
In the first two cases we will show that there exists a positive � that does not

depend on R and C such that

`.A0 \ @BR.0// � � � `.A0 \ BR.0//:

This implies that �.A0 \ @BR.0// � ��.A0 \ BR.0// and therefore

�.A0/ D �.A0 \ BR.0//C �.A0 \ @BR.0// � .1C �/�.A0 \ BR.0//:

Now we can estimate
�.@C \ BR.0//

�.C /
D
�.A0 \ BR.0//C �.@C n A0/

�.C /

� .1C �/�1
�.@C /

�.C /
� .1C �/�1c

r
2

�
;

where we used (B.18).
ad A. By (B.19) we have

`.A0 \ BR.0// � 2jR � �.R/j � 2�R:

Since `.A0 \ @BR.0// � 2R� , we can choose � D �=�.
ad B. If C is such that A0 \ @BR.0/ is not contained in any open half-plane H

such that 0 2 @H , then there has to be a connected component of A0\BR.0/ with
euclidean length at least R.

If A0 \ @BR.0/, however, is contained in some half-plane H , there is an arch
ƒ of BR.0/ in H whose endpoints are contained in A0 \ @BR.0/ and ƒ � A0 \
@BR.0/. Then `.A0 \ BR.0// � l , where l denotes the distance between the
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endpoints of ƒ. From basic geometry we know that `.ƒ/=2R D arcsin.l=2R/.
Since arcsin.x/ � �

2
x for x 2 Œ0; 1�, we obtain

`.A0 \ @BR.0//

`.A0 \ BR.0//
�
`.ƒ/

l
D

arcsin.l=2R/
l=2R

�
�

2
:

ad C. Let C 0 denote the open and bounded set with boundary A0 and set E WD
C 0 n xC . Since B�.0/ is contained in C 0 we have �.C 0/ � 3

4
�.BR.0// and

�.E/ D �.C 0nC/ D �.C 0/��.C/ �
3

4
�.BR.0//�

1

2
�.BR.0// D

1

4
�.BR.0//:

In case �.E/ � 1
2

we estimate using (B.18)

�.@C \ BR.0// � �.@E/ � c

r
2

�
�.E/ � c

r
2

�

1

4
�.BR.0//

� c

r
2

�

1

2
�.C /:

If �.E/ > 1
2

we can apply (B.18) on the unbounded set E 0 WD R2 n E. Since
BR.0/ � E it follows that �.BR.0// > 1

2
and we obtain

�.@C \ BR.0// � �.@E/ D �.@E
0/ � c

r
2

�
�.E 0/

D c

r
2

�
.1 � �.E// � c

r
2

�
.2�.BR.0// � �.BR.0/// � c

r
2

�
�.C /: �

Appendix C Spectral Clustering Algorithm
In this section we provide some details on the partitioning algorithm used for

our experiment in Section 2.2. Spectral clustering methods are based on relat-
ing optimal partitioning of a graph to the eigenvector corresponding to the second
eigenvalue of the so-called graph Laplacian.

Suppose we are given a set of finitely many points V WD fv1; : : : ; vlg � Rd and
a similarity measure w on V , i.e.,

w W V � V ! Œ0;1/; w is symmetric,

and w.vi ; vi / D 0 for all i 2 f1; : : : ; lg:

A weighted, undirected graph G is associated to the pair .V;w/ in a very natural
way: The vertices of G are exactly the points v1; : : : ; vl . Two vertices vi ; vj are
connected if and only if w.vi ; vj / > 0, and in this case their connecting edge has
weight w.vi ; vj /. The matrix W WD .w.vi ; vj //

l
i;jD1 is called the weight matrix

of G. For any i 2 f1; : : : ; lg and C � V , we will use the notations

di WD

lX
jD1

Wi;j ; vol.C / WD
X

j Wvj2C

dj ; cutG.C / WD
X

i;j Wvi2C;vj2V nC

Wi;j ;
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for the degree of the i th vertex, the volume of C , and the cut of C in V . The
Cheeger ratio of a set C � V is defined by

hG.C / WD
cutG.C /

minfvol.C /; vol.V n C/g
and the Cheeger constant of G by hG WD minC�V hG.C /.

Let us from now on assume the graph is connected, i.e., di > 0 for all i . To
compute a partition such that the corresponding Cheeger ratio is quasi-optimal, we
will draw onto the results in [12]. Let I denote the l � l identity matrix and D
the diagonal matrix with entries d1; : : : ; dl ; then the normalized graph Laplacian
is given by the matrix

L WD I �D�
1
2WD�

1
2 :

The vector .1; : : : ; 1/T is an eigenvector of L with corresponding eigenvalue 0. By
the assumption thatG is connected, all other eigenvalues ofLwill be positive. The
partition is computed by thresholding an eigenvector corresponding to the smallest
positive eigenvalue of L.

Let u be an element of the eigenspace of the smallest positive eigenvalue of L,
and let

C � be a minimizer of hG.�/ W fCt W t 2 Rg ! Œ0;1/;

where Ct WD fvi W ui > tg. Then for h�G WD hG.C
�/ it holds that

hG � h
�
G � 2 �

p
hG :

Here we have samples of jV'f .x; y/j available for .x; y/ 2 Z � � � Z2 C d ,
where d 2 R2 and � > 0. On the set Z we define a similarity measure w by

w.´; ´0/ WD

(
1
2
.jV'f j

p.´/C jV'f j
p.´0//; if j´ � ´0j D �;

0; otherwise.

Let C � Z. Since jV'f j is smooth, we obtain (for small �) that

cutG.C / D
X
´2C

´02ZnC

w.´; ´0/ D
X

´2C;´02ZnC
j´�´0jD�

1

2
.jV'f j

p.´/C jV'f j
p.´0//

�

X
´2C;´02ZnC
j´�´0jD�

jV'f j
p

�
´C ´0

2

�
:

Therefore, up to the factor �, cutG.D/ can be interpreted as a discrete version of
the boundary integral in the nominator in equation (2.1). Similarly, vol.C / can be
interpreted as an approximation of

R
C jV'f j that occurs in the denominator.
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