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Abstract
Cover's celebrated theorem states that the long-run yield of

a properly chosen “universal” portfolio is almost as good

as that of the best retrospectively chosen constant rebal-

anced portfolio. The “universality” refers to the fact that

this result is model-free, that is, not dependent on an under-

lying stochastic process. We extend Cover's theorem to the

setting of stochastic portfolio theory: the market portfolio is

taken as the numéraire, and the rebalancing rule need not be

constant anymore but may depend on the current state of the

stock market. By fixing a stochastic model of the stock mar-

ket this model-free result is complemented by a compari-

son with the numéraire portfolio. Roughly speaking, under

appropriate assumptions the asymptotic growth rate coin-

cides for the three approaches mentioned in the title of this

paper. We present results in both discrete and continuous

time.

K E Y W O R D S
Diffusions on the unit simplex, ergodic Markov process, functionally gen-

erated portfolios, long-only portfolios, log-optimal portfolio, stochastic

portfolio theory, universal portfolio

1 INTRODUCTION

In Fernholz and Karatzas (2009), the question was raised whether there is a relation between Cover's

theory of universal portfolio (which appeared as the very first paper of the present journal, see

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in

any medium, provided the original work is properly cited.

© 2018 The Authors. Mathematical Finance Published by Wiley Periodicals, Inc.

Mathematical Finance. 2019;29:773–803. wileyonlinelibrary.com/journal/mafi 773



774 CUCHIERO ET AL.

Cover, 1991) and stochastic portfolio theory (SPT henceforth) as initiated by Fernholz (see Fernholz,

2002 and the references therein). After all, both theories ask for general recipes for choosing in a

preference-free way good (at least in the long run) portfolios among 𝑑 assets, whose prices over time

are given by

𝑆 =
(
𝑆1
𝑡 ,… , 𝑆𝑑

𝑡

)
.

Here, the time 𝑡 varies in 𝕋 , where 𝕋 stands either for ℕ = {0, 1,…} (discrete time) or ℝ+ = [0,∞)
(continuous time). In many cases, 𝑆 is modeled by a stochastic process defined on some probability

space. We note, however, that one may also consider a model-free approach where 𝑆 = (𝑠1𝑡 ,… 𝑠𝑑𝑡 )𝑡∈𝕋
is just a deterministic trajectory with values in (0,∞)𝑑 . Indeed, Cover and Ordentlich's discrete time

results in Cover (1991) and Cover and Ordentlich (1996) are formulated in this model-free sense. The

situation is more subtle in continuous time due to stochastic integration. Jamshidian (1992), extended

Cover's universal portfolio to continuous time under a setting of Itô processes satisfying some asymp-

totic stability conditions.

In SPT, one also seeks robust investment strategies. More precisely, the strategies should be con-

structed using only observable quantities (such as market weights and their quadratic variations) and

should not depend on quantities that are nonobservable or difficult to estimate. In particular, no drift

estimation is involved which is usually required in expected utility maximization. These are exactly

the principles behind the concept of functionally generated portfolios (see Fernholz, 2002, chapter 3).

Although in most of the literature an Itô process setting is assumed, much of SPT can be developed

in a model-free setting as done by Pal and Wong (2016) in discrete time and by Schied, Speiser, and

Voloshchenko (2016) in continuous time. The reason why it works in continuous time is that the value

processes of functionally generated portfolios can be defined without stochastic integration.

In this paper, we connect the two theories and provide additionally a comparison with the numéraire

portfolio, which corresponds to the classical log-optimal portfolio.1 Relationships between the two

theories were studied in the recent papers by Ichiba and Brod (2014), and Brod (2014) as well as Wong

(2015). In particular, Wong (2015) extends Cover's approach to the family of functionally generated

portfolios in discrete time and shows that the distribution of wealth in this family satisfies a pathwise

large deviation principle.

1.1 Summary and discussion of the main results
In this paper, we work under the setting of SPT. Namely, the market portfolio is taken as the bench-

mark, or “numéraire,” so that the primary assets are the market weights which take values in the

open 𝑑-simplex defined by Δ𝑑 = {𝑥 ∈ (0, 1)𝑑 | ∑𝑑
𝑖=1 𝑥

𝑖 = 1}. Its closure is denoted by Δ̄𝑑 = {𝑥 ∈
[0, 1]𝑑 | ∑𝑑

𝑖=1 𝑥
𝑖 = 1}. This enables us to analyze strategies which depend on the market weights, and

the performance of relative wealth with respect to the market portfolio.

1.1.1 Discrete time
We start by summarizing our results in discrete time. We extend Cover's universal portfolio to a class

of 𝑀-Lipschitz portfolio maps denoted by L 𝑀 . Each element of L 𝑀 maps the market weights to

long-only portfolio weights in Δ̄𝑑 (see Definition 3.1).

Denoting by (𝑉 𝜋
𝑡 )∞

𝑡=0 the relative wealth process corresponding to a portfolio strategy2 (𝜋𝑡)∞𝑡=1, we

are interested in comparing the asymptotic growth rates

lim
𝑇→∞

1
𝑇
log

(
𝑉 𝜋
𝑇

)
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for certain “optimal” portfolio choices 𝜋. More precisely, under suitable conditions we establish asymp-

totic equality of the growth rates of the following portfolios:

• the best retrospectively chosen portfolio at time 𝑇 in the class L ∶=
⋃∞

𝑀=1 L 𝑀 (in this context

𝑉 ∗,𝑀
𝑇

will denote the relative wealth at time 𝑇 achieved by investing according to the best strategy

in L 𝑀 over the time interval [0, 𝑇 ]);
• the analog of Cover's universal portfolio whose relative wealth process (𝑉𝑡(𝜈))∞𝑡=0 is defined in (17)

(here 𝜈 is a probability measure on L with full support on each L 𝑀 );

• the log-optimal portfolio among the class of long-only strategies, whose relative wealth process is

denoted by (𝑉𝑡)∞𝑡=0.

The first two portfolios can be compared in a model-free way (see Theorem 3.9). To compare them

with the log-optimal portfolio, we have to introduce a probabilistic setting. Our main result can then

be roughly stated as follows:

Theorem 1.1. Let (𝜇𝑡)∞𝑡=0 be a time-homogenous ergodic Markov process in discrete time describing
the dynamics of the market weights. Then

lim
𝑀→∞

lim
𝑇→∞

1
𝑇
log

(
𝑉 ∗,𝑀
𝑇

)
= lim

𝑇→∞
1
𝑇
log(𝑉𝑇 (𝜈)) = lim

𝑇→∞
1
𝑇
log(𝑉𝑇 ) (1)

holds almost surely.

Intuitively, this theorem says that a suitable full support mixture of strategies (given by the universal

portfolio) is asymptotically as good as the best one chosen with hindsight, and the log-optimal portfolio

constructed with full knowledge of the underlying process.

1.1.2 Continuous time
Theorem 1.1, which involves Lipschitz portfolio maps, cannot be extended directly to continuous time

because of stochastic integrals. Instead, we consider functionally generated portfolios (see Section 4)

whose relative wealth processes can be defined in a pathwise manner (see, e.g., Schied et al., 2016). This

choice not only allows model-free considerations but also perfectly connects Cover's theory with SPT

in continuous time. By replacing the set L 𝑀 by certain spaces of functionally generated portfolios and

assuming that the log-optimal portfolio is functionally generated, we get essentially the same theorem

as above.

Apart from the work by Jamshidian (1992), universal portfolio theory has only been studied spar-

ingly in continuous time; see, for example, the paper Ichiba, Papathanakos, Banner, Karatzas, and

Fernholz (2011) which studied the performance of the universal portfolio under the “Hybrid Atlas”

model. To the best of our knowledge, generalizations to nonparametric families of portfolio maps (in

continuous time) have not been considered so far. In this sense, our results significantly extend the

continuous-time literature.

Although our approach focuses on the mathematical aspects, universal portfolio strategies have also

been studied extensively in an algorithmic framework. See Li and Hoi (2014) for a recent survey and

in particular Hazan and Kale (2015).

1.1.3 Discussion of the results
Our model-free approach has clear advantages over classical ones which heavily rely on a particular

model choice. Even in the case when the model class (e.g., the Heston model or Lévy models) is
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correctly specified, model parameters cannot be estimated precisely and always come with a confidence

interval. So, in practice, the estimated optimal portfolio is always different from the true optimal one.

Our results support the idea that a Bayesian average in the spirit of Cover's universal portfolio is, in the

long run, better than a suboptimal estimate.

As for the original theorems of Cover and Jamshidian, a valid criticism is of course that we only

establish asymptotic equality on a first-order log-return basis. As such, a lot of important information

is lost in the limit. However, one cannot expect to obtain any information on higher order terms unless

further quantitative assumptions are made on the considered models. Cover's aim and also the goal of

the present paper is to be as model-free as possible.3 Nevertheless, it is of great theoretical and practical

interest to strengthen the asymptotic results to quantitative ones under suitable additional conditions.

We hope to address this important question in future research.

The remainder of the paper is organized as follows. In Section 2, we provide a brief overview (in

discrete time for convenience) of the main topics of this paper, that is, Cover's theorem, the setting

of SPT, and the log-optimal portfolio. In Section 3, we establish Theorem 1.1 in discrete time (see

Theorem 3.10 and Corollary 3.11), whereas Section 4 is dedicated to proving the corresponding state-

ments in continuous time in the setting of functionally generated portfolios and—for the comparison

with the log-optimal portfolio—under the assumption that the market weights follow an ergodic Itô

diffusion (see Theorem 4.11 and Corollary 4.13). Some auxiliary and technical proofs are gathered in

the Appendix.

2 OVERVIEW OF THE THREE PORTFOLIOS

For expositional simplicity, time is discrete in this section.

2.1 Cover's universal portfolio
Cover's insight reveals that the “wisdom of hindsight” does not give significant advantages over a

properly chosen “universal” portfolio constructed using only historical and current prices of the assets.

The relevant optimality criterion here is the asymptotic growth rate of the portfolio.

Let us sketch this—at first glance surprising—result in a particularly easy setting (compare Cover,

1991; Cover & Ordentlich, 1996): Fix 𝑇 ∈ ℕ and think of an investor who at time 𝑇 looks back which

stock she should have bought at time 𝑡 = 0 (by investing her initial endowment and subsequently hold-

ing the stock). There is an obvious solution: pick 𝑖 ∈ {1,… , 𝑑} which maximizes the normalized log-

arithmic return

1
𝑇

(
log

(
𝑆𝑖
𝑇

)
− log

(
𝑆𝑖
0
))

. (2)

The problem with this trading strategy is, of course, that we have to make our choice at time 𝑡 = 0
instead of 𝑡 = 𝑇 . Here is the remedy (compare, e.g., Blum & Kalai, 1999): at time 𝑡 = 0 simply divide

the initial endowment, say 1𝑒, into 𝑑 portions of
1
𝑑
𝑒, invest each portion in each of the stocks and then

hold the resulting portfolio. At time 𝑇 , the normalized logarithmic return satisfies4

1
𝑇
log(𝑉𝑇 ) ≥ 1

𝑇
log

(
1
𝑑

𝑑∑
𝑗=1

𝑆
𝑗

𝑇

𝑆
𝑗

0

)
≥ 1

𝑇

(
log

(
𝑆𝑖
𝑇

)
− log

(
𝑆𝑖
0
)
− log 𝑑

)
, (3)
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where again 𝑖 denotes the stock which performed best during the time interval [0, 𝑇 ]. Hence, the differ-

ence between (2) and (3) can be bounded by
log(𝑑)
𝑇

which tends to zero as 𝑇 → ∞. Hence this buy-and-

hold portfolio, which corresponds to a universal portfolio in the sense of Cover, has asymptotically the

same normalized logarithmic return as the—only retrospectively known—best performing stock.

Instead of these “pure” investments, Cover considered a more ambitious setting, namely, all constant
rebalanced portfolio strategies: let 𝑏 = (𝑏1,… , 𝑏𝑑) ∈ Δ̄𝑑 , that is, 𝑏𝑗 ≥ 0 and

∑𝑑
𝑗=1 𝑏

𝑗 = 1. The value of

the corresponding constant rebalanced portfolio (𝑉𝑡(𝑏))∞𝑡=0 starting at 𝑉0(𝑏) = 1 is defined by holding

throughout the proportion 𝑏𝑗 of the current wealth in stock 𝑗, so that 𝑉0(𝑏) = 1 and

𝑉𝑡+1(𝑏)
𝑉𝑡(𝑏)

(𝑠) =
𝑑∑
𝑗=1

𝑏𝑗
𝑠
𝑗

𝑡+1

𝑠
𝑗
𝑡

(4)

for each trajectory 𝑠 = ((𝑠𝑗𝑡 )
𝑑
𝑗=1)

∞
𝑡=0 ⊂ (0,∞)𝑑 of the stocks.

Fix again 𝑇 and define the quantity 𝑉 ∗
𝑇

by

𝑉 ∗
𝑇
(𝑠) = max

𝑏∈Δ̄𝑑
𝑉𝑇 (𝑏)(𝑠), (5)

which is a function of the trajectory 𝑠 = (𝑠1𝑡 ,… , 𝑠𝑑𝑡 )
𝑇
𝑡=0. Again, the idea is that, with hindsight, that is,

knowing (𝑠1𝑡 ,… , 𝑠𝑑𝑡 )
𝑇
𝑡=0, one considers the best weight 𝑏 ∈ Δ̄𝑑 which attains the maximum (5). Cover's

goal is to construct a portfolio which generates wealth that performs asymptotically as well as the

process (𝑉 ∗
𝑇
)∞
𝑇=0 as 𝑇 → ∞, uniformly over all price paths. For this reason, the portfolio is said to be

universal. In order to do so, let 𝜈 be a probability measure on Δ̄𝑑 which replaces the previous uniform

distribution over the 𝑑 stocks. The universal portfolio is built by investing at time 0 the portion 𝑑𝜈(𝑏)
of initial capital in the constant rebalanced portfolio 𝑉 (𝑏) and by subsequently following the constant

rebalanced portfolio process (𝑉𝑡(𝑏))𝑇𝑡=0. The explicit formula for the wealth is

𝑉𝑡(𝜈)(𝑠) = ∫Δ̄𝑑

𝑉𝑡(𝑏)(𝑠)𝑑𝜈(𝑏), (6)

where 𝑉𝑡(𝑏) is defined by (4). The portfolio weight of the corresponding universal portfolio is given

by the wealth-weighted average

𝑏𝜈𝑡 (𝑠) =
∫Δ̄𝑑 𝑏𝑉𝑡(𝑏)(𝑠)𝑑𝜈(𝑏)
∫Δ̄𝑑 𝑉𝑡(𝑏)(𝑠)𝑑𝜈(𝑏)

. (7)

Let us now recall Cover's celebrated result:

Theorem 2.1. (Cover, 1991): Let 𝜈 be a probability measure on Δ̄𝑑 with full support. Then

lim
𝑇→∞

1
𝑇

(
log(𝑉𝑇 (𝜈)(𝑠)) − log

(
𝑉 ∗
𝑇
(𝑠)

))
= 0 (8)

for all trajectories 𝑠 = (𝑠1𝑡 ,… , 𝑠𝑑𝑡 )
∞
𝑡=0 for which there are constants 0 < 𝑐 ≤ 𝐶 < ∞ such that

𝑐 ≤ 𝑠
𝑗

𝑡+1

𝑠
𝑗
𝑡

≤ 𝐶, for all 𝑗 = 1,… , 𝑑 and all 𝑡 ∈ ℕ. (9)

The proof is given in the Appendix.
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Remark 2.2. As shown by Cover and Ordentlich (1996), the condition (9) can be dropped at least when

𝜈 is the uniform or Dirichlet ( 12 ,⋯ ,
1
2 ) distribution on Δ𝑑 (see also Blum & Kalai, 1999, for an elegant

proof in case of the uniform distribution).

Remark 2.3. Let 1(Δ̄𝑑) be the set of probability measures on Δ̄𝑑 . For each 𝜇 ∈ 1(Δ̄𝑑), consider

the value ∫Δ̄𝑑 𝑉𝑇 (𝑏)(𝑠)𝑑𝜇(𝑏) of the mixture portfolio with initial measure 𝜇. Note that the constant

rebalanced portfolio 𝑉𝑇 (𝑏) corresponds to the case where 𝜇 is the point mass at 𝑏. It is easy to see that

sup
𝜇∈1(Δ̄)

∫Δ̄𝑑

𝑉𝑇 (𝑏)(𝑠)𝑑𝜇(𝑏) = 𝑉 ∗
𝑇
(𝑠),

where 𝑉 ∗
𝑇
(𝑠) is defined by (5). It follows that the universal portfolio (6) (with initial measure 𝜈) is still

asymptotically optimal in the larger class{( ∫Δ̄𝑑 𝑏𝑉𝑡(𝑏)𝑑𝜇(𝑏)
∫Δ̄𝑑 𝑉𝑡(𝑏)(𝑠)𝑑𝜇(𝑏)

)
𝑡≥0

|𝜇 ∈ 1(Δ̄𝑑)

}
. (10)

2.2 SPT, portfolio maps, and the corresponding universal portfolio
In SPT, we let (𝑠1,… , 𝑠𝑑) denote the market capitalizations of the stocks rather than their prices. Then

we define the vector of market weights (𝜇1,… , 𝜇𝑑) ∈ Δ𝑑 by

(𝜇1,… , 𝜇𝑑) =
(

𝑠1

𝑠1 +⋯ + 𝑠𝑑
,… ,

𝑠𝑑

𝑠1 +⋯ + 𝑠𝑑

)
.

This amounts to taking the market portfolio (whose value at time 𝑡 is
∑𝑑

𝑗=1 𝑠
𝑗
𝑡 ) as the numéraire (com-

pare Delbaen & Schachermayer, 1995 and Fernholz & Karatzas, 2010a).

The relative wealth process (𝑉 𝜋
𝑡 )∞

𝑡=0, expressed in units of the market portfolio and starting at 𝑉0 = 1,

is obtained by the following recursive relation:5

𝑉 𝜋
𝑡+1
𝑉 𝜋
𝑡

=
𝑑∑
𝑗=1

𝜋
𝑗

𝑡+1

𝜇
𝑗

𝑡+1

𝜇
𝑗
𝑡

. (11)

In general, we allow all predictable, admissible trading strategies (𝜋𝑡)∞𝑡=1, where the portfolio weight

𝜋𝑡 is used over the time interval [𝑡 − 1, 𝑡]. In this paper, all trading strategies are fully invested in the

equity market, that is, the portfolio weights sum to 1 for all 𝑡. In particular, the strategies do not lend

or borrow money. Henceforth, all wealth processes are measured in units of the market portfolio.

We will focus on trading strategies defined by (deterministic) portfolio maps. These are (Borel)

measurable functions

𝜋 ∶ Δ𝑑 → Δ̄𝑑, (12)

which associate to the current market capitalization 𝜇𝑡 = (𝜇1
𝑡 ,… , 𝜇𝑑𝑡 ) the weights (𝜋(𝜇𝑡) =

(𝜋1(𝜇𝑡),… , 𝜋𝑑(𝜇𝑡)) according to which an agent distributes current wealth among the 𝑑 stocks at time 𝑡.

The constant rebalanced portfolio strategies considered by Cover correspond to the constant functions

𝜋 ∶ Δ𝑑 → Δ̄𝑑 .
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In this paper, we extend Cover's theory of constant rebalanced portfolios to certain families of port-
folio maps. First, we note that Cover's and Jamshidian's definition of a universal portfolio as in (7) and

(6) can be easily extended to a general setting. Let  denote some appropriate space of portfolio maps,

() its Borel 𝜎-algebra and 𝜈 some probability measure on .

Definition 2.4. Let 𝜈 be a probability measure on (,()). Then, the corresponding universal portfolio

at time 𝑡 is given by the wealth-weighted average

𝜋𝜈𝑡 =
∫ 𝜋𝑉 𝜋

𝑡 𝑑𝜈(𝜋)

∫ 𝑉 𝜋
𝑡 𝑑𝜈(𝜋)

. (13)

From (11), it is easily seen that the wealth generated by 𝜋𝜈 is given by

𝑉𝑇 (𝜈) = ∫ 𝑉
𝜋
𝑇
𝑑𝜈(𝜋). (14)

2.3 The log-optimal portfolio
To define the log-optimal portfolio, we consider a probabilistic setting. The stock price process

𝑆 = (𝑆1
𝑡 ,… , 𝑆𝑑

𝑡 )
∞
𝑡=0 and the corresponding relative market capitalizations 𝜇 = (𝜇1

𝑡 ,… , 𝜇𝑑𝑡 )
∞
𝑡=0 are now

assumed to be stochastic processes defined on a filtered probability space (Ω, , (𝑡)∞𝑡=0,ℙ).
There is a large literature on the log-optimal portfolio (see, e.g., Becherer, 2001; Karatzas &

Kardaras, 2007 and the references given there). For a fixed horizon 𝑇 , this portfolio is by definition the

maximizer of the expected logarithmic growth rate

𝔼[log(𝑉 𝜋
𝑇
)] = 𝔼

[
𝑇−1∑
𝑡=0

log

(
𝑑∑
𝑗=1

𝜋
𝑗

𝑡+1

𝜇
𝑗

𝑡+1

𝜇
𝑗
𝑡

)]
(15)

over all predictable, admissible trading strategies (𝜋𝑡)𝑇𝑡=1. Under mild assumptions on the process

a unique optimizer exists; see, for example, Becherer (2001) and Kramkov and Schachermayer

(1999).

To connect the log-optimal portfolio with universal portfolios in the sense of Definition 2.4,

we need appropriate assumptions. We will assume that 𝜇 is a time-homogenous Markov pro-

cess, and we will restrict to long-only portfolios in the optimization of (15). These imply that

the optimal portfolio in (15) (over the set of predictable processes taking values in Δ̄𝑑) has

the form 𝜋𝑡 = 𝜋(𝜇𝑡−1), where 𝜋 ∶ Δ𝑑 → Δ̄𝑑 as in (12). We denote the corresponding optimizer

by 𝜋.

The Markovian assumption can be motivated by the stability of capital distributions of equity

markets (see Fernholz, 2002, chapter 5). In SPT, this led to systems of interacting Brownian par-

ticles whose dynamics depend on their relative rankings. Under suitable conditions, these systems

show behaviors observed in large equity markets. See, for example, Banner, Fernholz, and Karatzas

(2005) and Ichiba et al. (2011) for “Atlas”-type models and the references therein.6 We also refer to

Kardaras and Robertson (2012) which studies the growth optimal portfolio in a Markovian setting with

uncertainties.
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3 A COMPARISON OF THE THREE APPROACHES—THE
DISCRETE TIME CASE

Throughout this section, we work in discrete time and assume that the market weights are described

by a 𝑑-dimensional path 𝜇 = (𝜇𝑡)∞𝑡=0 with values in Δ𝑑 . We consider as far as possible a model-free

approach, but will introduce a probabilistic setting when the log-optimal portfolio is involved.

3.1 Definitions of the portfolios
We start by defining rigorously, in the present setting, the three portfolios introduced in Sections 1

and 2.

3.1.1 The best retrospectively chosen portfolio
Consider Cover's theme of choosing retrospectively at time 𝑇 a strategy which is optimal within a

certain class of strategies, in our case portfolio maps 𝜋 ∶ Δ𝑑 → Δ̄𝑑 . A moment's reflection reveals

that it does not make sense to allow to choose among all measurable functions 𝜋 ∶ Δ𝑑 → Δ̄𝑑 . Indeed,

there is no restriction to choose 𝜋 such that 𝜋(𝜇𝑡) = 𝑒𝑗(𝑡), where 𝑗(𝑡) ∈ {1,… , 𝑑} maximizes 𝜇
𝑗

𝑡+1∕𝜇
𝑗
𝑡 .

This is asking for too much clairvoyance and does not allow for meaningful results (compare Cover &

Ordentlich, 1996; and Blum & Kalai, 1999, section 5).

However, it does make sense (economically as well as mathematically) to restrict to more regular

trading strategies. In particular, we work with the following set of 𝑀-Lipschitz portfolio maps. For

𝜖 > 0, we let Δ̄𝑑
𝜖 denote the set of 𝑥 ∈ Δ𝑑 satisfying 𝑥𝑗 ≥ 𝜖

𝑑
, for 𝑗 = 1,… , 𝑑. Also we let ‖ ⋅ ‖1 be the

usual 1-norm.

Definition 3.1. For 𝑀 > 0, we denote by L 𝑀 the set of all 𝑀-Lipschitz functions Δ𝑑 → Δ̄𝑑
𝑀−1 , that

is, ‖𝜋(𝑥) − 𝜋(𝑦)‖1 ≤ 𝐿‖𝑥 − 𝑦‖1, 𝑥, 𝑦 ∈ Δ𝑑 .

Remark 3.2. The set L 𝑀 of 𝑀-Lipschitz functions 𝜋 ∶ Δ𝑑 → Δ̄𝑑
𝑀−1 is a compact metric space with

respect to the topology of uniform convergence induced by the norm ‖𝜋‖∞ = sup{‖𝜋(𝑥)‖1 ∶ 𝑥 ∈ Δ𝑑}.

Remark 3.3. Instead of Lipschitz functions we could just as well consider other compact function

spaces, for example, Hölder spaces equipped with a proper norm. This is done in the context of func-

tionally generated portfolios in Section 4.

The retrospectively chosen best performing portfolio among the above Lipschitz maps is defined as

follows:

Definition 3.4. For a given trajectory (𝜇𝑡)𝑇𝑡=0 ∈ (Δ𝑑)𝑇+1, we define

𝑉 ∗,𝑀
𝑇

= sup
𝜋∈L𝑀

𝑉 𝜋
𝑇

= sup
𝜋∈L𝑀

𝑇−1∏
𝑡=0

(
𝑑∑
𝑗=1

𝜋𝑗(𝜇𝑡)
𝜇
𝑗

𝑡+1

𝜇
𝑗
𝑡

)
. (16)

By compactness (see Remark 3.2) and continuity of the map 𝜋 → 𝑉 𝜋
𝑇

, there exists an optimizer

𝜋∗,𝑀 ∈ L 𝑀 (not necessarily unique) such that 𝑉 ∗,𝑀
𝑇

= 𝑉 𝜋∗,𝑀

𝑇
, thus the sup above can be replaced by

max.
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3.1.2 The universal portfolio
Our aim is to find a predictable process 𝜋𝑀 = (𝜋𝑀𝑡 )∞

𝑡=1, that is, one which depends only on the his-

tory of the market weights, such that the performance of (𝑉 𝜋𝑀

𝑡 )∞
𝑡=0 is asymptotically as good as that

of (𝑉 ∗,𝑀
𝑡 )∞

𝑡=0. This can be achieved by the universal portfolio introduced in Definition 2.4, where the

 is now L 𝑀 as in Definition 3.1. As L 𝑀 is a compact metric space, we may find a (Borel) proba-

bility measure 𝜈 on (L𝑀, ‖ ⋅ ‖∞) with full support; this will be essential for establishing an analog to

Theorem 2.1. The (relative) wealth of the universal portfolio is given, as in (14), by

𝑉 𝑀
𝑇

(𝜈) = ∫L𝑀

𝑉 𝜋
𝑇
𝑑𝜈(𝜋). (17)

3.1.3 The log-optimal portfolio
In order to relate the universal portfolio to the (long-only) log-optimal portfolio, we assume that 𝜇 =
(𝜇𝑡)∞𝑡=0 is a time-homogeneous Markov process (see Section 2.3). Here is a precise statement.

Assumption 3.5. The process 𝜇 is a time homogeneous, ergodic Markov process with a unique invari-

ant measure 𝜚 on the open simplex Δ𝑑 .

We denote the transition kernel of the chain by (𝜚(𝑥, ⋅))𝑥∈Δ𝑑 , that is, for all Borel sets 𝐴 ⊆ Δ̄𝑑 we

have ℙ[𝜇𝑡+1 ∈ 𝐴|𝑡] = 𝜚(𝜇𝑡, 𝐴). For further notions concerning ergodic Markov processes, we refer

to Eberle (2016).

The long-only log-optimal trading strategy 𝜋, as noted above, is given in terms of a portfolio map.

Given that 𝜇𝑡 = 𝑥 ∈ Δ𝑑 , we know the conditional law 𝜚(𝑥, ⋅) of 𝜇𝑡+1. We therefore choose 𝜋(𝑥) ∈ Δ̄𝑑

as the maximizer

𝜋(𝑥) = argmax
𝑝∈Δ̄𝑑

(
∫Δ𝑑

log
(⟨

𝑝,
𝑦

𝑥

⟩)
𝜚(𝑥, 𝑑𝑦)

)
(18)

and assume that 𝜋(⋅) can be chosen to be measurable (here ⟨, ⟩ denotes the Euclidean dot product). For

𝑥 ∈ Δ𝑑 , define the number 𝐿(𝑥) as the value of the optimization problem (18), that is,

𝐿(𝑥) = max
𝑝∈Δ̄𝑑

(
∫Δ𝑑

log
(⟨

𝑝,
𝑦

𝑥

⟩)
𝜚(𝑥, 𝑑𝑦)

)
= ∫Δ𝑑

log
(⟨

𝜋(𝑥), 𝑦
𝑥

⟩)
𝜚(𝑥, 𝑑𝑦). (19)

Considering 𝜋(𝑥) = 𝑥 (which corresponds to the market portfolio) we clearly have 𝐿(𝑥) ≥ 0 for each

𝑥 ∈ Δ𝑑 . We obtain the a.s. relation

𝐿(𝑥) = 𝔼

[
log

(
𝑉𝑡+1

𝑉𝑡

)||||||𝜇𝑡 = 𝑥

]
,

where 𝑉 = (𝑉𝑡)∞𝑡=0 denotes the long-only log-optimal wealth process 𝑉 𝜋 defined by the portfolio map

𝜋 via (11).

Assumption 3.6. Using the above notation we assume that

𝐿 ∶= ∫Δ𝑑

𝐿(𝑥)𝑑𝜚(𝑥) < ∞. (20)
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Applying Birkhoff's ergodic theorem for discrete time Markov processes (see Eberle, 2016, theorem

2.2, section 2.1.4), we have the following result.

Theorem 3.7. Under Assumptions 3.5 and 3.6, we have that, for 𝜚-a.e. starting value 𝜇0 ∈ Δ𝑑 ,

lim
𝑇→∞

1
𝑇
log(𝑉𝑇 ) = 𝐿, (21)

the limit holding true a.s. as well as in 𝐿1.
More generally, let 𝜋 ∶ Δ𝑑 → Δ̄𝑑 be any measurable portfolio map such that

𝐿𝜋 ∶= ∫Δ𝑑

(
∫Δ𝑑

log
(⟨

𝜋(𝑥), 𝑦
𝑥

⟩)
𝜚(𝑥, 𝑑𝑦)

)
𝑑𝜚(𝑥) > −∞. (22)

We then have, for 𝜚-a.s. starting value 𝜇0, that

lim
𝑇→∞

1
𝑇
log

(
𝑉 𝜋
𝑇

)
= 𝐿𝜋 (23)

a.s. as well as in 𝐿1.

In general, there is little reason why the function 𝜋 should have better regularity properties than being

just measurable. On the other hand, we may approximate 𝜋 by more regular functions, in particular by

functions in L 𝑀 . This will be crucial for comparing the asymptotic growth rates. The following result

is intuitively obvious, but the proof turns out to be quite technical and will be given in the Appendix.

Lemma 3.8. Under Assumptions 3.5 and 3.6, for any 𝜖 > 0 there exist 𝑀 > 0 and an 𝑀-Lipschitz

function 𝜋𝐿𝑖𝑝 ∈ L 𝑀 such that

𝐿𝜋𝐿𝑖𝑝 > 𝐿 − 𝜖,

where 𝐿 and 𝐿𝜋 are given in (20) and (22), respectively. In particular, we have 𝐿 =
sup𝑀 sup𝜋∈L𝑀 𝐿𝜋 .

3.2 Asymptotically equivalent growth rates
We are now ready to compare the asymptotic performance of the three approaches. We first establish

an analog of Theorem 2.1.

Theorem 3.9. Fix 𝑀 > 0 and a Borel probability measure 𝜈 with full support on L 𝑀 . For every
trajectory (𝜇𝑡)∞𝑡=0 in Δ𝑑 , we have

lim
𝑇→∞

1
𝑇

(
log

(
𝑉 ∗,𝑀
𝑇

)
− log

(
𝑉 𝑀
𝑇

(𝜈)
))

= 0. (24)

Proof. The inequality “≥” is obvious. For the reverse inequality, we follow the argument of Blum and

Kalai (1999). As L 𝑀 is compact and 𝜈 has full support, it is not difficult to see that for any 𝜂 > 0,

there exists 𝛿 > 0 such that every 𝜂-neighborhood of a point 𝜋 ∈ L 𝑀 has 𝜈-measure bigger than 𝛿.

Let a trajectory (𝜇𝑡)∞𝑡=0 in Δ𝑑 be given. For a fixed time 𝑇 , let 𝜋∗,𝑀 ∈ L 𝑀 be an optimizer of (16).

Consider a portfolio map 𝜋𝑀 ∈ L 𝑀 with ‖𝜋𝑀 − 𝜋∗,𝑀‖∞ < 𝜂, that is, such that, for every 𝑥 ∈ Δ𝑑

we have ‖𝜋𝑀 (𝑥) − 𝜋∗,𝑀 (𝑥)‖1 = ∑𝑑
𝑗=1 |𝜋𝑀 (𝑥)𝑗 − 𝜋∗,𝑀 (𝑥)𝑗| < 𝜂.
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Choose 𝜂 > 0 small enough so that 𝛼 = 𝜂𝑀𝑑 < 1 and define, for 𝑥 ∈ Δ𝑑 ,

𝜋(𝑥) = 1
𝛼
𝜋𝑀 (𝑥) − 1 − 𝛼

𝛼
𝜋∗,𝑀 (𝑥). (25)

Rearranging, we have

𝜋𝑀 (𝑥) = (1 − 𝛼)𝜋∗,𝑀 (𝑥) + 𝛼𝜋(𝑥). (26)

It is easy to see that 𝜋 maps Δ𝑑 into Δ̄𝑑 .

Using (26), we have the estimate

1
𝑇
log𝑉 𝜋𝑀

𝑇
= 1

𝑇

𝑇−1∑
𝑡=0

log
(⟨

𝜋𝑀 (𝜇𝑡),
𝜇𝑡+1
𝜇𝑡

⟩)

≥ 1
𝑇

𝑇−1∑
𝑡=0

log
(⟨

(1 − 𝛼)𝜋∗,𝑀 (𝜇𝑡),
𝜇𝑡+1
𝜇𝑡

⟩)
= 1

𝑇
log

(
𝑉 ∗,𝑀
𝑇

)
+ log(1 − 𝛼). (27)

Fix 𝜖 > 0. Choosing 𝜂 > 0 sufficiently small we can make 𝛼 = 𝜂𝑀𝑑 small enough such that the

final term is bigger than −𝜖. Summing up, we have

1
𝑇

[
log

(
𝑉 ∗,𝑀
𝑇

)
− log

(
𝑉 𝜋𝑀

𝑇

)]
< 𝜖 (28)

whenever ‖𝜋𝑀 − 𝜋∗,𝑀‖∞ < 𝜂.

Denote by 𝐵 = 𝐵𝜂(𝜋∗,𝑀 ) the ‖ ⋅ ‖∞-ball with radius 𝜂 in L 𝑀 which has 𝜈-measure at least 𝛿 > 0,

where 𝛿 only depends on 𝜂. As each element 𝜋𝑀 of 𝐵 satisfies (28) we have

1
𝑇
log

(
𝑉 𝑀
𝑇

(𝜈)
) ≥ log(𝛿)

𝑇
+ 1
𝑇
log

(
𝑉 ∗,𝑀
𝑇

)
− 𝜖. (29)

Now (24) is proved by sending in (29) 𝑇 to infinity and letting 𝜖 to zero. □

Note that in Theorem 3.9 we do not need the uniform boundedness condition (9) (compare this result

with Wong, 2015, lemma 3.3). We now combine Lemma 3.8 (which is probabilistic) with Theorem 3.9

(which is pathwise) to obtain—under suitable assumptions–equality of the asymptotic performance

among the three portfolios. We first consider the space L 𝑀 for a fixed 𝑀 . In Corollary 3.11, we then

formulate a result for L =
⋃

𝑀 L 𝑀 .

Theorem 3.10. Let Ω = (Δ𝑑)ℕ be the canonical path space equipped with its natural filtration and a
probability measure ℙ. Define 𝜇 = (𝜇𝑡)∞𝑡=0 to be the canonical process, that is, 𝜇𝑡(𝜔) = 𝜔𝑡, which takes
values in Δ𝑑 and satisfies Assumptions 3.5 and 3.6. Moreover, let 𝑀 > 0 be a fixed Lipschitz constant
for the space L 𝑀 . Consider the following objects that are defined for each trajectory (𝜇𝑡)∞𝑡=0:7

(i) Define for each 𝑇 ∈ ℕ the portfolio map 𝜋∗,𝑀 ∈ L 𝑀 as well as the corresponding wealth
𝑉 ∗,𝑀
𝑇

∶= 𝑉 𝜋∗,𝑀

𝑇
as in (16) .

(ii) Fix a probability measure 𝜈 on L 𝑀 with full support and consider the wealth process of the
universal portfolio (𝑉 𝑀

𝑡 (𝜈))∞
𝑡=0 as of (17).
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(iii) Define the log-optimal portfolio among the portfolio maps 𝜋 ∈ L 𝑀 by

𝜋𝑀 = argmax
𝜋∈L𝑀 ∫Δ𝑑

[
∫Δ𝑑

log
(⟨

𝜋(𝑥), 𝑦
𝑥

⟩)
𝜚(𝑥, 𝑑𝑦)

]
𝑑𝜚(𝑥) (30)

and the corresponding wealth process (𝑉 𝑀
𝑡 )∞

𝑡=0 = (𝑉 𝜋𝑀

𝑡 )∞
𝑡=0 via (11).

Then, we have ℙ-a.s.

lim inf
𝑇→∞

1
𝑇
log

(
𝑉 ∗,𝑀
𝑇

)
= lim inf

𝑇→∞
1
𝑇
log

(
𝑉 𝑀
𝑇

(𝜈)
)
= lim

𝑇→∞
1
𝑇
log

(
𝑉 𝑀
𝑇

)
= sup

𝜋∈L𝑀

𝐿𝜋, (31)

where 𝐿𝜋 is given in (22). In addition, the first equality holds for all trajectories (𝜇𝑡)∞𝑡=0 in Δ𝑑 .

Proof. We first note that 𝜋𝑀 is well-defined; simply use the compactness of L 𝑀 with respect to ‖ ⋅ ‖∞
(compare the proof of Lemma 3.8). Note also that by the ergodic theorem (Theorem 3.7), we have for

each 𝜋 ∈ L 𝑀

lim
𝑇→∞

1
𝑇
log𝑉 𝜋

𝑇
= 𝐿𝜋 ℙ-a.s.,

where 𝐿𝜋 is defined by (22). In particular, as 𝜋𝑀 ∈ L 𝑀 by definition, we have

lim
𝑇→∞

1
𝑇
log𝑉 𝑀

𝑇
= sup

𝜋∈L𝑀

𝐿𝜋 ℙ-a.s. (32)

That the first equality in (31) holds for all trajectories (𝜇𝑡)∞𝑡=0 in Δ𝑑 was shown in Theorem 3.9.

For each fixed 𝑇 ∈ ℕ, we obviously have

1
𝑇
log

(
𝑉 𝑀
𝑇

) ≤ 1
𝑇
log

(
𝑉 ∗,𝑀
𝑇

)
ℙ-a.s. (33)

Using (32), (33), and Theorem 3.9 we thus have ℙ-a.s.

sup
𝜋∈L𝑀

𝐿𝜋 = lim
𝑇→∞

1
𝑇
log

(
𝑉 𝑀
𝑇

) ≤ lim inf
𝑇→∞

1
𝑇
log

(
𝑉 ∗,𝑀
𝑇

)
= lim inf

𝑇→∞
1
𝑇
log

(
𝑉 𝑀
𝑇

(𝜈)
)
. (34)

On the other hand, by the definition of (𝑉 𝑀
𝑡 )∞

𝑡=0 as the log-optimizer within the class L 𝑀 , we have

𝔼
[
log

(
𝑉 𝑀
𝑇

(𝜈)
)] ≤ sup

𝜋∈L𝑀

𝔼
[
log

(
𝑉 𝜋
𝑇

)]
= 𝔼

[
log

(
𝑉 𝑀
𝑇

)]
. (35)

To see this, note that the universal portfolio is given by (13). By the time-homogenous Markovianity it

is thus sufficient to dominate the left-hand side of (35) by taking the supremum over elements in L 𝑀 .

Combining now (35), Theorem 3.7 and (34) yields that

𝔼
[
lim inf
𝑇→∞

1
𝑇
log

(
𝑉 𝑀
𝑇

(𝜈)
)] ≤ lim inf

𝑇→∞
1
𝑇
𝔼

[
log𝑉 𝑀

𝑇
(𝜈)

]
≤ lim

𝑇→∞
1
𝑇
𝔼

[
log

(
𝑉 𝑀
𝑇

)]
= lim

𝑇→∞
1
𝑇
log

(
𝑉 𝑀
𝑇

)
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≤ lim inf
𝑇→∞

1
𝑇
log𝑉 ∗,𝑀

𝑇

= lim inf
𝑇→∞

1
𝑇
log

(
𝑉 𝑀
𝑇

(𝜈)
)
, ℙ-a.s.

Here, the first inequality follows from Fatou's lemma (note here that
1
𝑇
log(𝑉 𝑀

𝑇
(𝜈)) is bounded from

below, see, e.g., (29)). From this we see that the quantity lim inf𝑇→∞
1
𝑇
log(𝑉 𝑀

𝑇
(𝜈)) is ℙ-a.s. constant

and equal to lim𝑇→∞
1
𝑇
log(𝑉 𝑀

𝑇
). This completes the proof of the theorem. □

Next we will send 𝑀 to infinity in the following way. For 𝑀 = 1, 2, 3,… choose a measure 𝜈𝑀 on

L 𝑀 with full support. Define 𝜈 =
∑∞

𝑀=1 2
−𝑀𝜈𝑀 and the wealth of the universal portfolio 𝑉 (𝜈) as in

(17) by

𝑉𝑡(𝜈) = ∫L

𝑉 𝜋
𝑡 𝑑𝜈(𝜋), 𝑡 ∈ ℕ. (36)

where L =
⋃∞

𝑀=1 L 𝑀 . Recall that (𝑉𝑡)∞𝑡=0 is the wealth process of the (long-only) log-optimal port-

folio (18).

Corollary 3.11. Under the assumptions of Theorem 3.10 we have ℙ-a.s.

lim
𝑀→∞

lim
𝑇→∞

1
𝑇
log𝑉 ∗,𝑀

𝑇
= lim

𝑇→∞
1
𝑇
log𝑉𝑇 (𝜈) = lim

𝑇→∞
1
𝑇
log𝑉𝑇 = 𝐿, (37)

where 𝐿 is defined in (20).

Proof. Letting 𝑀 → ∞ in (31), we have

lim
𝑀→∞

lim inf
𝑇→∞

1
𝑇
log𝑉 ∗,𝑀

𝑇
= lim

𝑀→∞
sup

𝜋∈L𝑀

𝐿𝜋 = 𝐿 = lim
𝑇→∞

1
𝑇
log𝑉𝑇 ,

where the last equality follows from Theorem 3.7 and the second last follows from Lemma 3.8. By

construction 𝑉𝑇 (𝜈) ≥ 2−𝑀𝑉 𝑀
𝑇

(𝜈𝑀 ) for every 𝑀 , so we have by Theorem 3.9 for every 𝑀

lim inf
𝑇→∞

1
𝑇
log𝑉𝑇 (𝜈) ≥ lim inf

𝑇→∞
1
𝑇

(
−𝑀 log 2 + log𝑉 𝑀

𝑇
(𝜈𝑀 )

)
= lim inf

𝑇→∞
1
𝑇
log𝑉 ∗,𝑀

𝑇
,

and hence also

lim inf
𝑇→∞

1
𝑇
log𝑉𝑇 (𝜈) ≥ lim

𝑀→∞
lim inf
𝑇→∞

1
𝑇
log𝑉 ∗,𝑀

𝑇
.

Using the same argument as in the last part of the proof of Theorem 3.10, we get

lim
𝑀→∞

lim inf
𝑇→∞

1
𝑇
log𝑉 ∗,𝑀

𝑇
= lim inf

𝑇→∞
1
𝑇
log𝑉𝑇 (𝜈) = lim

𝑇→∞
1
𝑇
log𝑉𝑇 = 𝐿. (38)

Now the corollary is proved if

lim sup
𝑇→∞

1
𝑇
(log𝑉𝑇 (𝜈) − log𝑉𝑇 ) = lim sup

𝑇→∞

1
𝑇
log

(
𝑉𝑇 (𝜈)
𝑉𝑇

)
= 0 (39)
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holds ℙ-a.s. As by Lemma 3.12, (𝑉𝑡(𝜈)
𝑉𝑡

)∞
𝑡=0 is a nonnegative supermartingale, it converges ℙ-a.s. to a

finite limit as 𝑡 → ∞. This in turn implies (39) and proves the assertion. □

Lemma 3.12. The process (𝑉𝑡(𝜈)
𝑉𝑡

)∞
𝑡=0 is a nonnegative supermartingale.

Proof. First note that for any 𝜋 ∶ Δ𝑑 → Δ̄𝑑 , (𝑉
𝜋
𝑡

𝑉𝑡
)∞
𝑡=0 is a nonnegative supermartingale. Indeed, by

Lemma 3.13 we have

𝐸

[
𝑉 𝜋
𝑡+1

𝑉𝑡+1

|||𝑡

]
=

𝑉 𝜋
𝑡

𝑉𝑡
∫Δ𝑑

⟨𝜋(𝜇𝑡), 𝑦

𝜇𝑡
⟩⟨𝜋(𝜇𝑡), 𝑦

𝜇𝑡
⟩𝜚(𝜇𝑡, 𝑑𝑦) ≤ 𝑉 𝜋

𝑡

𝑉𝑡

.

By Fubini's theorem, we get the supermartingale property of (𝑉𝑡(𝜈)
𝑉𝑡

)∞
𝑡=0,

𝐸

[
𝑉𝑡+1(𝜈)

𝑉𝑡+1

|||𝑡

]
= 𝐸

[
∫L

𝑉 𝜋
𝑡+1

𝑉𝑡+1
𝑑𝜈(𝜋)|||𝑡

]

= ∫L

𝐸

[
𝑉 𝜋
𝑡+1

𝑉𝑡+1

|||𝑡

]
𝑑𝜈(𝜋)

≤ ∫L

𝑉 𝜋
𝑡

𝑉𝑡

𝑑𝜈(𝜋) =
𝑉𝑡(𝜈)

𝑉𝑡

.

□

Here we establish the supermartingale property used in the previous proof.

Lemma 3.13. Let 𝜋 be given by (18). Then for every 𝜋 ∶ Δ𝑑 → Δ̄𝑑 and every 𝑥 ∈ Δ𝑑 ,

∫Δ𝑑

⟨𝜋(𝑥), 𝑦
𝑥
⟩⟨𝜋(𝑥), 𝑦

𝑥
⟩𝜚(𝑥, 𝑑𝑦) ≤ 1.

Proof. We proceed as in the proof of Becherer (2001, proposition 4.3). Fix 𝜋 and 𝛼 ∈ (0, 1) and define

𝜋𝛼 = 𝛼𝜋 + (1 − 𝛼)𝜋. Then by the (long only) log-optimality of 𝜋 we have for every 𝑥 ∈ Δ𝑑

0 ≤ ∫Δ𝑑

(
log

⟨
𝜋(𝑥), 𝑦

𝑥

⟩
− log

⟨
𝜋𝛼(𝑥), 𝑦

𝑥

⟩)
𝜚(𝑥, 𝑑𝑦) = ∫Δ𝑑

⎛⎜⎜⎝∫
⟨
𝜋(𝑥), 𝑦

𝑥

⟩
⟨
𝜋𝛼(𝑥), 𝑦

𝑥

⟩ 1
𝑧
𝑑𝑧

⎞⎟⎟⎠ 𝜚(𝑥, 𝑑𝑦)
≤ ∫Δ𝑑

⟨𝜋(𝑥), 𝑦
𝑥
⟩ − ⟨𝜋𝛼(𝑥), 𝑦

𝑥
⟩⟨𝜋𝛼(𝑥), 𝑦

𝑥
⟩ 𝜚(𝑥, 𝑑𝑦) = ∫Δ𝑑

⟨𝛼(𝜋(𝑥) − 𝜋(𝑥)), 𝑦
𝑥
⟩⟨𝜋𝛼(𝑥), 𝑦

𝑥
⟩ 𝜚(𝑥, 𝑑𝑦).

Hence,

∫Δ𝑑

⟨𝜋(𝑥), 𝑦
𝑥
⟩⟨𝜋𝛼(𝑥), 𝑦
𝑥
⟩𝜚(𝑥, 𝑑𝑦) ≤ ∫Δ𝑑

⟨𝜋(𝑥), 𝑦
𝑥
⟩⟨𝜋𝛼(𝑥), 𝑦
𝑥
⟩𝜚(𝑥, 𝑑𝑦) ≤ ∫Δ𝑑

⟨𝜋(𝑥), 𝑦
𝑥
⟩⟨(1 − 𝛼)𝜋(𝑥), 𝑦

𝑥
⟩𝜚(𝑥, 𝑑𝑦),
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where the last equality follows from 𝜋𝛼 ≥ (1 − 𝛼)𝜋. By Fatou's lemma, we therefore have

∫Δ𝑑

⟨𝜋(𝑥), 𝑦
𝑥
⟩⟨𝜋(𝑥), 𝑦

𝑥
⟩𝜚(𝑥, 𝑑𝑦) = ∫Δ𝑑

lim
𝛼→0

⟨𝜋(𝑥), 𝑦
𝑥
⟩⟨𝜋𝛼(𝑥), 𝑦
𝑥
⟩𝜚(𝑥, 𝑑𝑦) ≤ lim

𝛼→0∫Δ𝑑

⟨𝜋(𝑥), 𝑦
𝑥
⟩⟨𝜋𝛼(𝑥), 𝑦
𝑥
⟩𝜚(𝑥, 𝑑𝑦)

≤ lim
𝛼→0

1
1 − 𝛼 ∫Δ𝑑

⟨𝜋(𝑥), 𝑦
𝑥
⟩⟨𝜋(𝑥), 𝑦

𝑥
⟩𝜚(𝑥, 𝑑𝑦) = 1.

□

4 THE CONTINUOUS TIME CASE WITH FUNCTIONALLY
GENERATED PORTFOLIOS

This section is dedicated to a similar analysis in continuous time and with functionally generated port-

folio maps (Fernholz, 2002, chapter 3). Using the pathwise Itô calculus developed by Föllmer (1981),

we can define the corresponding wealth processes in a pathwise manner for any continuous market

path admitting a quadratic variation process. This allows us to define the best retrospectively chosen

portfolio which is not well-defined in general (and in particular for the Lipschitz portfolio maps).

4.1 Functionally generated portfolios
We consider the following set of concave functions. For some fixed 𝑀 > 0 and 0 ≤ 𝛼 ≤ 1, we define

𝑀,𝛼 =
{
𝐺 ∈ 𝐶2,𝛼(Δ̄𝑑), concave such that ‖𝐺‖𝐶2,𝛼 ≤ 𝑀 and 𝐺 ≥ 1

𝑀

}
,

where 𝐶2,𝛼(Δ̄𝑑) denotes the Hölder space of 2-times continuously differentiable functions from Δ̄𝑑 →
ℝ whose derivatives are 𝛼-Hölder continuous. That is,

𝐶2,𝛼(Δ̄𝑑) = {𝐺 ∈ 𝐶2(Δ̄𝑑) | ‖𝐺‖𝐶2,𝛼 < ∞},

where

‖𝐺‖𝐶2,𝛼 = max|𝐤|≤2 ‖𝐷𝐤𝐺‖∞ + max|𝐤|=2 sup𝑥≠𝑦
|𝐷𝐤𝐺(𝑥) −𝐷𝐤𝐺(𝑦)|‖𝑥 − 𝑦‖𝛼

with 𝐤 denoting a multi-index in ℕ2. For 𝛼 = 0, the second term in this norm is left away. Note that 𝐺

is only defined on the simplex Δ𝑑 . In order that the partial derivatives are well-defined, we assume that

each 𝐺 is extended to an open neighborhood of Δ𝑑 such that 𝐺(𝑥) = 𝐺(𝑥′), where 𝑥′ is the orthogonal

projection of 𝑥 onto Δ𝑑 . The choice of the extension is irrelevant.

Here is an analytical lemma whose proof is given in the appendix.

Lemma 4.1. For any 𝑀,𝛼 > 0, the set 𝑀,𝛼 is compact with respect to ‖ ⋅ ‖𝐶2,0 .

To the set of generating functions 𝑀,𝛼 , we associate now the set of functionally generated portfolios

𝑀,𝛼 in the spirit of Fernholz (2002) defined by

𝑀,𝛼 =

{
𝜋𝐺 ∶ Δ𝑑 → Δ̄𝑑,
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𝑥 → (𝜋𝐺(𝑥))𝑖 = 𝑥𝑖

(
𝐷𝑖𝐺(𝑥)
𝐺(𝑥)

+ 1 −
𝑑∑
𝑗=1

𝐷𝑗𝐺(𝑥)
𝐺(𝑥)

𝑥𝑗

)
, 𝑖 = 1,… 𝑑, |𝐺 ∈ 𝑀,𝛼

}
. (40)

By the concavity of 𝐺, 𝜋𝐺 takes values in Δ̄𝑑 , that is, it is long-only (see, e.g., Fernholz & Karatzas,

2009, remark 11.1). The corresponding wealth processes are denoted by 𝑉 𝜋𝐺 or 𝑉 𝐺.

For these portfolios, it is possible to obtain a pathwise expression for 𝑉 𝜋𝐺 . We refer the reader to

Schied et al. (2016) for extensions of this pathwise approach to time-dependent and path-dependent

generating functions. There, this is achieved by applying the functional Itô calculus developed by

Dupire (2009) and Cont and Fournié (2010, 2013), which generalizes Föllmer's Itô calculus to path-

dependent functionals. In this paper, we only consider functionally generated portfolio maps as defined

in (40).

We adopt the notation of Schied et al. (2016) and fix a refining sequence of partitions (𝕋𝑛)∞𝑛=1 of

[0,∞), that is, 𝕋𝑛 = {𝑡0, 𝑡1,…} is such that 0 = 𝑡𝑛0 < 𝑡𝑛1 < ⋯ and 𝑡𝑛
𝑘
→ ∞ as 𝑘 → ∞, and 𝕋1 ⊂ 𝕋2 ⊂ ⋯.

Moreover, the mesh of 𝕋𝑛 tends to zero on each compact interval as 𝑛 → ∞. Furthermore, we denote

the successor of 𝑡 ∈ 𝕋𝑛 by 𝑡′. That is, 𝑡′ = min{𝑢 ∈ 𝕋𝑛 |, 𝑢 > 𝑡}. Throughout this section, the market

weights are described by a 𝑑-dimensional continuous path 𝜇 = (𝜇𝑡)𝑡≥0 with values in Δ𝑑 . Here and

henceforth we let 𝑆+
𝑑

be the set of 𝑑 × 𝑑 positive definite matrices.

Assumption 4.2. The path (𝜇𝑡)𝑡≥0 admits a continuous 𝑆+
𝑑

-valued quadratic variation [𝜇] along (𝕋𝑛)
in the sense of Föllmer (1981), that is, for any 1 ≤ 𝑖, 𝑗 ≤ 𝑑 and all 𝑡 ≥ 0 the sequence

∑
𝑠∈𝕋𝑛,𝑠≤𝑡

(
𝜇𝑖
𝑠′ − 𝜇𝑖𝑠

) (
𝜇
𝑗

𝑠′
− 𝜇𝑗𝑠

)

converges to a finite limit, as 𝑛 → ∞, denoted [𝜇𝑖, 𝜇𝑗]𝑡, such that 𝑡 → [𝜇𝑖, 𝜇𝑗]𝑡 is continuous.

The dynamics of the relative wealth process 𝑉 𝜋𝐺 built by investing according to 𝜋𝐺 ∈ 𝑀,𝛼 are

given in this continuous-time case by

𝑑𝑉 𝜋𝐺

𝑡

𝑉 𝜋𝐺

𝑡

=
𝑑∑
𝑖=1

(
𝜋𝐺(𝜇𝑡)

)𝑖 𝑑𝜇𝑖𝑡
𝜇𝑖𝑡

=
𝑑∑
𝑖=1

𝐷𝑖𝐺(𝜇𝑡)
𝐺(𝜇𝑡)

𝑑𝜇𝑖𝑡, 𝑉 𝜋
0 = 1, (41)

(compare (11) in the discrete time case), where the right-hand side has to be understood as Föllmer's

pathwise integral (cf. equation (6) in Schied et al., 2016). Note that the second equality holds by the

definition of 𝜋𝐺 and the fact that
∑𝑑

𝑖=1 𝑑𝜇
𝑖
𝑡 = 0.

Using (41) and Föllmer's Itô calculus, we have the following pathwise version of Fernholz's (2002)

master equation (also see Schied et al., 2016, theorem 2.9).

Corollary 4.3. Let 𝐺 ∈ 𝐶2(Δ̄𝑑) and 𝜋𝐺 be defined as in (40). Let (𝜇𝑡)𝑡≥0 be a continuous path satis-
fying Assumption 4.2. Then 𝑉 𝜋𝐺 satisfies

𝑉 𝜋𝐺

𝑇
≡ 𝑉 𝐺

𝑇
=

𝐺(𝜇𝑇 )
𝐺(𝜇0)

𝑒𝔤([0,𝑇 ]), 0 ≤ 𝑇 < ∞, (42)

where 𝔤(𝑑𝑡) = − 1
2𝐺(𝜇𝑡)

∑
𝑖,𝑗 𝐷

𝑖𝑗𝐺(𝜇𝑡)𝑑[𝜇𝑖, 𝜇𝑗]𝑡.
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4.2 Definitions of the portfolios
We again consider (i) the best retrospectively chosen portfolio, (ii) the universal portfolio, and (iii) the

log-optimal portfolio. To define the log-optimal portfolio, we will restrict to a specific stochastic model

introduced in Section 4.2.3. In Section 4.2.4, we derive the asymptotic growth rate for this model class

under an additional ergodicity assumption.

4.2.1 The best retrospectively chosen portfolio
We consider the set of functionally generated portfolios 𝑀,𝛼 and a given continuous path (𝜇𝑡)𝑡≥0
satisfying Assumption 4.2. For 𝑀,𝛼 > 0 fixed, we define

𝑉 ∗,𝑀,𝛼
𝑇

= sup
𝜋𝐺∈𝑀,𝛼

𝑉 𝜋𝐺

𝑇
= sup

𝐺∈𝑀,𝛼

𝑉 𝐺
𝑇
. (43)

We first prove that an optimizer exists by establishing the following continuity property whose proof

can be found in the appendix.

Lemma 4.4. Let 𝑇 ,𝑀, 𝛼 > 0 be fixed and (𝜇𝑡)𝑡≥0 be a continuous path satisfying Assumption 4.2.
Consider the function𝐺 → 𝑉 𝐺

𝑇
where 𝑉 𝐺

𝑇
is given by (42). Then𝐺 → 𝑉 𝐺

𝑇
is continuous from (𝑀,𝛼, ‖ ⋅‖𝐶2,0 ) to ℝ.

Proposition 4.5. Let 𝑇 be fixed and (𝜇𝑡)𝑡≥0 be a continuous path satisfying Assumption 4.2. Let 𝑉 ∗,𝑀,𝛼
𝑇

be defined by (43). Then there exists an optimizer 𝐺∗
𝑇
∈ 𝑀,𝛼and in turn a portfolio 𝜋∗

𝑇
generated by

𝐺∗
𝑇

such that

𝑉 ∗,𝑀,𝛼
𝑇

= 𝑉
𝜋∗
𝑇

𝑇
= 𝑉

𝐺∗
𝑇

𝑇
.

Proof. This is simply a consequence of continuity as proved in Lemma 4.4 and compactness of

(𝑀,𝛼, ‖ ⋅ ‖𝐶2,0 ) as shown in Lemma 4.1. □

4.2.2 Universal portfolio
To define the analog of Cover's/Jamshidian's portfolio in the present setting, let𝑚 be a Borel probability

measure on (𝑀,𝛼, ‖ ⋅ ‖𝐶2,0 ). Consider the map

𝐹 ∶ 𝑀,𝛼 → 𝑀,𝛼; 𝐺 → 𝐹 (𝐺) = 𝜋𝐺, (44)

where 𝜋𝐺 is given by (40). Define now on (𝑀,𝛼, ‖ ⋅ ‖∞) a Borel probability measure 𝜈 via the

pushforward 𝜈 = 𝐹∗𝑚. As in Definition 2.4, we then define the corresponding universal portfolio via

𝜋𝜈
𝑇
=

∫𝑀,𝛼 𝜋𝐺(𝜇𝑇 )𝑉 𝜋𝐺

𝑇
𝑑𝜈(𝜋𝐺)

∫𝑀,𝛼 𝑉 𝜋𝐺

𝑇
𝑑𝜈(𝜋𝐺)

. (45)

Analogous to (14), the value of the universal portfolio is given by

𝑉 𝑀,𝛼
𝑇

(𝜈) ∶= 𝑉 𝜋𝜈

𝑇
= ∫𝑀,𝛼

𝑉 𝜋𝐺

𝑇
𝑑𝜈(𝜋𝐺) = ∫𝑀,𝛼

𝑉 𝐺
𝑇
𝑑𝑚(𝐺). (46)

Remark 4.6. More precisely, we need to verify that the universal portfolio still allows for pathwise

integration and that the value of the portfolio (as a pathwise integral) is given by the right-hand side
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of (46). These claims can be easily checked using the definitions and results in Schied et al. (2016), so

we omit the details.

4.2.3 Functionally generated log-optimal portfolios
By definition, the log-optimal portfolios requires a stochastic model for the market weights. We

suppose that 𝜇 = (𝜇1
𝑡 ,… , 𝜇𝑑𝑡 )𝑡≥0 follows a time-homogeneous Markovian Itô diffusion, defined on

(Ω, , (𝑡)𝑡≥0,ℙ) with values in Δ𝑑 , given by

𝜇𝑡 = 𝜇0 + ∫
𝑡

0
𝑐(𝜇𝑠)𝜆(𝜇𝑠)𝑑𝑠 + ∫

𝑡

0

√
𝑐(𝜇𝑠)𝑑𝑊𝑠, 𝜇0 ∈ Δ𝑑, (47)

where
√
⋅ denotes the matrix square root, 𝑊 is a 𝑑-dimensional Brownian motion, 𝜆 is a Borel mea-

surable function from Δ𝑑 → ℝ𝑑 , and 𝑐 is a Borel measurable function from Δ𝑑 → 𝑆𝑑
+, satisfying

∫
𝑇

0
𝜆⊤(𝜇𝑡)𝑐(𝜇𝑡)𝜆(𝜇𝑡)𝑑𝑡 < ∞, ∀𝑇 ∈ [0,∞), (48)

𝑐(𝑥)𝟏 = 0,
∑
𝑖,𝑗

𝑐𝑖𝑗(𝑥)𝜆(𝑥)𝑗 = 0, ∀𝑥 ∈ Δ𝑑. (49)

The requirements in (49) are necessary to guarantee that the process 𝜇 lies in Δ𝑑 . Note that (𝜇𝑡)𝑡≥0
given by (47) satisfies the so-called structure condition (see Schweizer, 1995) (because of (48) and the

fact that the drift part is of form ∫ 𝑡

0 𝑐(𝜇𝑠)𝜆(𝜇𝑠)𝑑𝑠). This structural condition characterizes the condition

of “no unbounded profit with bounded risk” (NUPBR) in the case of continuous semimartingales (see,

e.g., Hulley & Schweizer, 2010).

In this setting, the proportions of current (relative) wealth invested in each of the assets are described

by processes 𝜋 in the following set:

Π = {𝜋 |𝐻𝑑-valued, predictable, 𝑅-integrable}, (50)

where the process 𝑅 is defined componentwise by 𝑅𝑖
𝑡 = ∫ 𝑡

0
𝑑𝜇𝑖𝑠
𝜇𝑖𝑠

. Here, 𝐻𝑑 denotes the hyperplane cor-

responding to portfolio weights that are not necessarily long-only, that is, 𝐻𝑑 = {𝑥 ∈ ℝ𝑑|∑𝑑
𝑗=1 𝑥

𝑗 =
1}. Note that the set 𝑀,𝛼 is clearly a subset of long-only strategies in Π. The relative wealth process

𝑉 𝜋 satisfies

𝑑𝑉 𝜋
𝑡

𝑉 𝜋
𝑡

=
𝑑∑
𝑖=1

𝜋𝑖𝑡
𝑑𝜇𝑖𝑡

𝜇𝑖𝑡
, 𝑉 𝜋

0 = 1. (51)

In contrast to Section 4.1, this is a usual stochastic integral because we are dealing with general inte-

grands 𝜋. Note that we can also write

𝑉 𝜋
𝑇

= ((𝜋 ∙𝑅))𝑇 = exp

(
∫

𝑇

0

(
𝜋

𝜇𝑡

)⊤

𝑑𝜇𝑡 −
1
2 ∫

𝑇

0

(
𝜋

𝜇𝑡

)⊤

𝑐(𝜇𝑡)
𝜋

𝜇𝑡
𝑑𝑡

)
(52)

= exp

(
∫

𝑇

0

𝑑∑
𝑖=1

𝜋𝑖
𝑑𝜇𝑖𝑡

𝜇𝑖𝑡
− 1

2 ∫
𝑇

0

∑
𝑖,𝑗

𝜋𝑖

𝜇𝑖𝑡

𝜋𝑗

𝜇
𝑗
𝑡

𝑐𝑖𝑗(𝜇𝑡)𝑑𝑡

)
,

where, for two vectors 𝑝, 𝑞 ∈ ℝ𝑑 , 𝑝∕𝑞 always denotes the componentwise quotient ( 𝑝
1

𝑞1
,… ,

𝑝𝑑

𝑞𝑑
).
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Next we consider the log-optimal portfolio defined by (15) (but in continuous time now). As in

Fernholz and Karatzas (2010b, section 3.1), we derive the ratio of two wealth processes 𝑉 𝜋 and 𝑉 𝜃

for 𝜋, 𝜃 ∈ Π. Using (51) (for the processes 𝜋 and 𝜃) and Itô's lemma, this ratio is given by

𝑑

(
𝑉 𝜋
𝑡

𝑉 𝜃
𝑡

)
=

𝑉 𝜋
𝑡

𝑉 𝜃
𝑡

(
𝜋𝑡
𝜇𝑡

−
𝜃𝑡
𝜇𝑡

)⊤ (
𝑑𝜇𝑡 − 𝑐(𝜇𝑡)

𝜃𝑡
𝜇𝑡
𝑑𝑡

)

=
𝑉 𝜋
𝑡

𝑉 𝜃
𝑡

(
𝜋𝑡
𝜇𝑡

−
𝜃𝑡
𝜇𝑡

)⊤ (√
𝑐(𝜇𝑡)𝑑𝑊𝑡 + 𝑐(𝜇𝑡)

(
𝜆(𝜇𝑡) −

𝜃𝑡
𝜇𝑡

)
𝑑𝑡

)
.

The finite variation part of the expression vanishes for every 𝜋 ∈ Π if we choose 𝜃 ∈ Π such that

𝑐(𝜇𝑡)
(
𝜃𝑡
𝜇𝑡

− 𝜆(𝜇𝑡)
)

= 0, ℙ-a.s. for all 𝑡 ≥ 0. (53)

By passing from the scaled relative weights 𝜃∕𝜇 to ordinary portfolio weights via Fernholz and

Karatzas (2010b, equation (5)), the generic solution of (53), which we denote by 𝜋,8 is given by

𝜋𝑖𝑡 = 𝜇𝑖𝑡

(
𝜆𝑖(𝜇𝑡) + 1 −

𝑑∑
𝑗=1

𝜇
𝑗
𝑡 𝜆

𝑗(𝜇𝑡)

)
. (54)

Let 𝑉 be the associated wealth process. From (53), the ratio 𝑉 𝜋
𝑡 ∕𝑉𝑡 is, for any 𝜋 ∈ Π, a nonnegative

local martingale and therefore a supermartingale. Hence 𝑉𝑡 yields the relative wealth process corre-

sponding to the log-optimal portfolio (see, e.g., Fernholz & Karatzas, 2010b; Karatzas & Kardaras,

2007). Indeed, by the supermartingale property and Jensen's inequality

𝔼
[
log

(
𝑉 𝜋
𝑇

)
− log

(
𝑉𝑇

)]
= 𝔼

[
log

(
𝑉 𝜋
𝑇

𝑉𝑇

)]
≤ log

(
𝔼

[
𝑉 𝜋
𝑇

𝑉𝑇

])
≤ 0.

Thus 𝔼[log(𝑉 𝜋
𝑇
)] ≤ 𝔼[log(𝑉𝑇 )] for all 𝜋 ∈ Π.

By (52), the expected value of the log-optimal portfolio is given by

sup
𝜋∈Π

𝔼
[
log𝑉 𝜋

𝑇

]
= 1

2
𝔼

[
∫

𝑇

0
𝜆⊤(𝜇𝑡)𝑐(𝜇𝑡)𝜆(𝜇𝑡)𝑑𝑡

]
.

So far we have optimized over all strategies in Π. In the sequel, we shall mainly consider suprema

taken over smaller sets, in particular over 𝑀,𝛼 . Note that in this case the optimizer will still be a

function of the market weights due to the Markov property of (𝜇𝑡)𝑡≥0.

In this context, let us also answer the question of when the log-optimal portfolio is functionally

generated. This is needed to relate its asymptotic growth rate to the one of the best retrospectively

chosen portfolio and the universal portfolio.

Proposition 4.7. Let (𝜇𝑡)𝑡≥0 be of the form (47). Then the log-optimal portfolio is generated by a
differentiable function 𝐺, that is,

𝜋𝑖𝑡 = 𝜇𝑖𝑡

(
𝐷𝑖𝐺(𝜇𝑡)
𝐺(𝜇𝑡)

+ 1 −
𝑑∑
𝑗=1

𝜇
𝑗
𝑡

𝐷𝑗𝐺(𝜇𝑡)
𝐺(𝜇𝑡)

)
, 𝑖 = 1,… , 𝑑,
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if the drift characteristic 𝜆 satisfies

𝜆(𝑥) = ∇ log𝐺(𝑥) = ∇𝐺(𝑥)
𝐺(𝑥)

, 𝑥 ∈ Δ𝑑.

Proof. The assertion follows from expression (54). □

4.2.4 Asymptotic growth rates for an ergodic market weights process

Assumption 4.8. The process 𝜇 as given in (47) is an ergodic process with stationary measure 𝜚 on

Δ𝑑 .

With this assumption we derive an expression of the asymptotic growth rate lim𝑇→∞
1
𝑇
log𝑉 𝜋

𝑇
. For

the precise notion of ergodicity in continuous time, we refer to Eberle (2016, section 2.2., theorem 2.4,

and section 2.2.3). Assumption 4.8 is essentially satisfied under a mean reversion condition. Examples

include polynomial models for the market weights staying in the interior of the simplex (see Cuchiero,

2019, theorem 5.1) with the subclass of volatility stabilized models (Fernholz & Karatzas, 2005).

In the following theorem, we consider portfolio maps which are not necessarily long-only, but can

take values in the hyperplane 𝐻𝑑 .

Theorem 4.9. Under Assumption 4.8 the following statements hold true:

(i) Let 𝜋 ∶ Δ𝑑 → 𝐻𝑑 be any (𝜚-measurable) portfolio map such that

∫Δ𝑑

|||||
(
𝜋(𝑥)
𝑥

)⊤

𝑐(𝑥)𝜆(𝑥)
||||| 𝜚(𝑑𝑥) < ∞,

𝑄𝜋 ∶= ∫Δ𝑑

(
𝜋(𝑥)
𝑥

)⊤

𝑐(𝑥)
(
𝜋(𝑥)
𝑥

)
𝜚(𝑑𝑥) < ∞. (55)

We then have, for 𝜚-a.e. starting value 𝜇0, that

lim
𝑇→∞

1
𝑇
log(𝑉 𝜋

𝑇
) = 𝐿𝜋 ∶= ∫Δ𝑑

(
𝜋(𝑥)
𝑥

)⊤

𝑐(𝑥)𝜆(𝑥)𝜚(𝑑𝑥)

− 1
2 ∫Δ𝑑

(
𝜋(𝑥)
𝑥

)⊤

𝑐(𝑥)
(
𝜋(𝑥)
𝑥

)
𝜚(𝑑𝑥), ℙ-a.s.

(ii) Assume that𝐿 ∶= 1
2 ∫Δ𝑑 𝜆

⊤(𝑥)𝑐(𝑥)𝜆(𝑥)𝜚(𝑑𝑥) < ∞. Then, for 𝜚-a.e. starting value 𝜇0, it holds that

lim
𝑇→∞

1
𝑇
log𝑉𝑇 = 𝐿, ℙ-a.s.

The proof of Theorem 4.9 relies on the following lemma which is stated and proved in Fernholz

(2002, lemma 1.3.2).

Lemma 4.10. Let 𝑀 be a continuous local martingale such that

lim
𝑇→∞

1
𝑇 2 ⟨𝑀,𝑀⟩𝑇 log log 𝑇 = 0, ℙ-a.s. (56)

Then lim𝑇→∞
1
𝑇
𝑀𝑇 = 0, ℙ-a.s.
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Proof of Theorem 4.9. Let us start by proving statement (i). By (51), log𝑉 𝜋
𝑇

reads as

log𝑉 𝜋
𝑇

= ∫
𝑇

0

(
𝜋(𝜇𝑡)
𝜇𝑡

)⊤

𝑐(𝜇𝑡)𝜆(𝜇𝑡)𝑑𝑡 −
1
2 ∫

𝑇

0

(
𝜋(𝜇𝑡)
𝜇𝑡

)⊤

𝑐(𝜇𝑡)
𝜋(𝜇𝑡)
𝜇𝑡

𝑑𝑡 (57)

+∫
𝑇

0

(
𝜋(𝜇𝑡)
𝜇𝑡

)⊤ √
𝑐(𝜇𝑡)𝑑𝑊𝑡.

The local martingale part

𝑀𝜋
𝑇
∶= ∫

𝑇

0

(
𝜋(𝜇𝑡)
𝜇𝑡

)⊤ √
𝑐(𝜇𝑡)𝑑𝑊𝑡

satisfies Condition (56) of Lemma 4.10. Indeed, by the ergodic theorem in continuous time (see, e.g.,

Eberle, 2016, theorem 2.4 and section 2.2.3) and (55) we have

1
𝑇

⟨𝑀𝜋,𝑀𝜋⟩𝑇 = 1
𝑇 ∫

𝑇

0

(
𝜋(𝜇𝑡)
𝜇𝑡

)⊤

𝑐(𝜇𝑡)
𝜋(𝜇𝑡)
𝜇𝑡

𝑑𝑡
𝑇→∞
→ 𝑄𝜋 < ∞, ℙ-a.s.

Multiplying the left-hand side with (log log 𝑇 )∕𝑇 , therefore yields Condition (56) and

1
𝑇
𝑀𝜋

𝑇
= 1

𝑇 ∫
𝑇

0

(
𝜋(𝜇𝑡)
𝜇𝑡

)⊤ √
𝑐(𝜇𝑡)𝑑𝑊𝑡 → 0, ℙ-a.s.

Hence, evoking again the ergodic theorem yields

lim
𝑇→∞

1
𝑇
log𝑉 𝜋

𝑇
= lim

𝑇→∞
1
𝑇

(
∫

𝑇

0

(
𝜋(𝜇𝑡)
𝜇𝑡

)⊤

𝑐(𝜇𝑡)𝜆(𝜇𝑡)𝑑𝑡 −
1
2 ∫

𝑇

0

(
𝜋(𝜇𝑡)
𝜇𝑡

)⊤

𝑐(𝜇𝑡)
𝜋(𝜇𝑡)
𝜇𝑡

𝑑𝑡

)

= ∫Δ𝑑

(
𝜋(𝑥)
𝑥

)⊤

𝑐(𝑥)𝜆(𝑥)𝜚(𝑑𝑥) − 1
2 ∫Δ𝑑

(
𝜋(𝑥)
𝑥

)⊤

𝑐(𝑥)
(
𝜋(𝑥)
𝑥

)
𝜚(𝑑𝑥),

ℙ-a.s. (and also in 𝐿1(Ω, , 𝑃 )) and thus assertion (i).

Concerning statement (ii), note from (53) that the scaled relative weights corresponding to the log-

optimal portfolio satisfy

𝑐(𝑥)
(
𝜋(𝑥)
𝑥

− 𝜆(𝑥)
)

= 0.

Thus, by (57) and (51), log𝑉𝑇 simplifies to

log𝑉𝑇 = 1
2 ∫

𝑇

0
𝜆⊤(𝜇𝑡)𝑐(𝜇𝑡)𝜆(𝜇𝑡)𝑑𝑡 + ∫

𝑇

0
𝜆⊤(𝜇𝑡)

√
𝑐(𝜇𝑡)𝑑𝑊𝑡.

In this case, we have

1
𝑇

⟨𝑀𝜋,𝑀𝜋⟩𝑇 = 1
𝑇 ∫

𝑇

0
𝜆⊤(𝜇𝑡)𝑐(𝜇𝑡)𝜆(𝜇𝑡)𝑑𝑡

𝑇→∞
→ 2𝐿, ℙ-a.s.,
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which yields by the same argument as above

1
𝑇
𝑀𝜋

𝑇
= 1

𝑇 ∫
𝑇

0
𝜆⊤(𝜇𝑡)

√
𝑐(𝜇𝑡)𝑑𝑊𝑡 → 0, ℙ-a.s.

and in turn

lim
𝑇→∞

1
𝑇
log𝑉𝑇 = lim

𝑇→∞
1
2𝑇 ∫

𝑇

0
𝜆⊤(𝜇𝑡)𝑐(𝜇𝑡)𝜆(𝜇𝑡)𝑑𝑡 = 𝐿, ℙ-a.s.

□

4.3 Asymptotically equivalent growth rates
As in discrete time, we will establish asymptotic equality of the growth rates of all three portfolio

types introduced in Section 4.2. First, we compare the best retrospectively chosen portfolio with the

universal one. For an analogous result in the context of optimal arbitrage, see theorem 4.5 of Kardaras

and Robertson (2012).

Theorem 4.11. Let 𝑀,𝛼 > 0 be fixed and let (𝜇𝑡)𝑡≥0 be a continuous path satisfying Assumption 4.2
such that for all 𝑖 ∈ {1,… , 𝑑}

lim
𝑇→∞

1
𝑇
[𝜇𝑖, 𝜇𝑖]𝑇 < ∞. (58)

Consider a probability measure 𝑚 on 𝑀,𝛼 with full support and set 𝜈 = 𝐹∗𝑚 with 𝐹 defined in (44).
Then

lim
𝑇→∞

1
𝑇

(
log𝑉 ∗,𝑀,𝛼

𝑇
− log𝑉 𝑀,𝛼

𝑇
(𝜈)

)
= 0,

where 𝑉 ∗,𝑀,𝛼 and 𝑉 𝑀,𝛼(𝜈) are defined in (43) and (46), respectively.

Proof. The inequality “≥” is obvious. For the converse inequality, we proceed similarly as in the

previous section (using only generating functions). As 𝑚 has full support and 𝑀,𝛼 is compact, we

have that, for 𝜂 > 0 there exists some 𝛿 > 0, such that every 𝜂-neighborhood of a point 𝐺 ∈ 𝑀,𝛼 has

𝑚-measure bigger than 𝛿.

Let 𝑇 ≥ 1 and denote by 𝐺∗
𝑇

the optimizer as of Proposition 4.5. Consider now a generating function

𝐺 such ‖𝐺 − 𝐺∗
𝑇
‖𝐶2,0 ≤ 𝜂. Then it follows from (A9) that

1
𝑇

(
log

(
𝑉 𝐺
𝑇

)
− log

(
𝑉

𝐺∗
𝑇

𝑇

)) ≥ 1
𝑇

(
−2𝑀𝜂 −

(
𝑀

2
𝑑2𝜂 + 𝑀3

2
𝑑2𝜂

)
max
𝑖
[𝜇𝑖, 𝜇𝑖]𝑇

)
= ∶ −𝐾𝑇 . (59)

Fix 𝜖 > 0 and note that by assumption (58) and continuity of 𝑇 → 1
𝑇
[𝑢𝑖, 𝑢𝑖]𝑇 on [1,∞),

sup𝑇∈[1,∞)
1
𝑇
[𝜇𝑖, 𝜇𝑖]𝑇 can be bounded by some constant. Therefore, we can choose 𝜂 sufficiently small

such that 𝐾𝑇 ≤ 𝜖 for all 𝑇 ≥ 1.
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Denote by 𝐵 = 𝐵𝜂(𝐺∗
𝑇
) the ‖ ⋅ ‖𝐶2,0 -ball with radius 𝜂 in 𝑀,𝛼 which has 𝑚-measure at least 𝛿 > 0,

where 𝛿 only depends on 𝜂. We then may estimate using Jensen's inequality and (59)

⎛⎜⎜⎝
𝑉 𝑀,𝛼
𝑇

(𝜈)

𝑉
𝐺∗
𝑇

𝑇

⎞⎟⎟⎠
1
𝑇

=
⎛⎜⎜⎝
∫𝑀,𝛼 𝑉

𝐺
𝑇
𝑚(𝑑𝐺)

𝑉
𝐺∗
𝑇

𝑇

⎞⎟⎟⎠
1
𝑇

≥
⎛⎜⎜⎝
∫
𝐵𝜂(𝐺∗

𝑇
) 𝑉

𝐺
𝑇
𝑚(𝑑𝐺)

𝑉
𝐺∗
𝑇

𝑇

⎞⎟⎟⎠
1
𝑇

≥ 𝛿
1
𝑇
−1

∫
𝐵𝜂(𝐺∗

𝑇
)(𝑉

𝐺
𝑇
)
1
𝑇 𝑚(𝑑𝐺)

(𝑉
𝐺∗
𝑇

𝑇
)
1
𝑇

≥ 𝛿
1
𝑇 𝑒−𝐾𝑇 ≥ 𝛿

1
𝑇 𝑒−𝜖.

Letting 𝑇 → ∞ for any given 𝜖 (which determines 𝜂 and in turn 𝛿) yields the assertion. □

To compare the asymptotic performance with that of the log-optimal portfolio, we optimize over

portfolio maps in 𝑀,𝛼 and suppose henceforth that (𝜇𝑡)𝑡≥0 is of the form (47). Under Assumption

4.8 and from Theorem 4.9 define

𝜋𝑀,𝛼 ∶= argmax
𝜋𝐺∈𝑀,𝛼

(
∫Δ𝑑

(
𝜋𝐺(𝑥)
𝑥

)⊤

𝑐(𝑥)𝜆(𝑥)𝜚(𝑑𝑥) (60)

−1
2 ∫Δ𝑑

(
𝜋𝐺(𝑥)
𝑥

)⊤

𝑐(𝑥)
(
𝜋𝐺(𝑥)
𝑥

)
𝜚(𝑑𝑥)

)

and the corresponding wealth process 𝑉 𝑀,𝛼 by 𝑉 𝑀,𝛼 = 𝑉 𝜋𝑀,𝛼
, whenever 𝜋𝑀,𝛼 is well-defined. As

sup
𝜋𝐺∈𝑀,𝛼

𝔼
[
log

(
𝑉 𝜋𝐺

𝑇

)]
yields 𝜋𝑀,𝛼 as optimizer for all 𝑇 > 0, 𝑉 𝑀,𝛼 corresponds to the log-optimal portfolio among func-

tionally generated portfolios with generating function in 𝑀,𝛼 .

Theorem 4.12. Let 𝑀,𝛼 > 0 be fixed and let (𝜇𝑡)𝑡≥0 be a stochastic process of the form (47) satisfying
Assumption 4.8. Moreover, suppose that

∫Δ𝑑

𝑐𝑖𝑖(𝑥)𝜚(𝑑𝑥) < ∞, for all 𝑖 ∈ {1,… , 𝑑}, (61)

∫Δ𝑑

max
𝑖∈{1,…,𝑑}

|(𝑐(𝑥)𝜆(𝑥))𝑖|𝜚(𝑑𝑥) < ∞. (62)

Consider a probability measure 𝑚 on 𝑀,𝛼 with full support and set 𝜈 = 𝐹∗𝑚 with 𝐹 defined in (44).
Then

lim inf
𝑇→∞

1
𝑇
log𝑉 ∗,𝑀,𝛼

𝑇
= lim inf

𝑇→∞
1
𝑇
log𝑉 𝑀,𝛼

𝑇
(𝜈) = lim

𝑇→∞
1
𝑇
log𝑉 𝑀,𝛼

𝑇
, ℙ-a.s. (63)

where 𝑉 𝑀,𝛼
𝑇

denotes the log-optimal portfolio among 𝑀,𝛼-maps defined via (60), 𝑉 ∗,𝑀,𝛼 and
𝑉 𝑀,𝛼(𝜈) are defined pathwise in (43) and (46), respectively.
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Proof. We first note that 𝜋𝑀,𝛼 is well-defined. Indeed, the map

𝐺 → ∫Δ𝑑

(
𝜋𝐺(𝑥)
𝑥

)⊤

𝑐(𝑥)𝜆(𝑥)𝜚(𝑑𝑥) − 1
2 ∫Δ𝑑

(
𝜋𝐺(𝑥)
𝑥

)⊤

𝑐(𝑥)
(
𝜋𝐺(𝑥)
𝑥

)
𝜚(𝑑𝑥)

= ∫Δ𝑑

(
∇𝐺(𝑥)
𝐺(𝑥)

)⊤

𝑐(𝑥)𝜆(𝑥)𝜚(𝑑𝑥) − 1
2 ∫Δ𝑑

(
∇𝐺(𝑥)
𝐺(𝑥)

)⊤

𝑐(𝑥)
(
∇𝐺(𝑥)
𝐺(𝑥)

)
𝜚(𝑑𝑥)

is continuous from (𝑀,𝛼, ‖ ⋅ ‖2,0) to ℝ. This together with compactness of 𝑀,𝛼 with respect to ‖ ⋅ ‖2,0
imply the well-definedness of 𝜋𝑀,𝛼 .

Note also that (61) and (62) as well as the conditions on 𝐺 imply the assumptions of the ergodic

theorem (Theorem 4.9). Hence, we have for each 𝜋𝐺 ∈ 𝑀,𝛼 the ℙ-a.s. limit

lim
𝑇→∞

1
𝑇
log𝑉 𝜋𝐺

𝑇
= 𝐿𝜋𝐺.

In particular,

lim
𝑇→∞

1
𝑇
log𝑉 𝑀,𝛼

𝑇
= sup

𝜋𝐺∈𝑀,𝛼

𝐿𝜋𝐺 =∶ 𝐿𝑀,𝛼 (64)

holds ℙ-a.s.

Due to (61), we can now apply Theorem 4.11 which implies the first equality in (63). Moreover, we

have by the definition of 𝑉 ∗,𝑀,𝛼
𝑇

for each fixed 𝑇 the inequality

1
𝑇
log

(
𝑉 𝑀,𝛼
𝑇

) ≤ 1
𝑇
log

(
𝑉 ∗,𝑀,𝛼
𝑇

)
, ℙ-a.s. (65)

Using (64), (65), and Theorem 4.11, we thus have ℙ-a.s.,

𝐿𝑀,𝛼 = lim
𝑇→∞

1
𝑇
log

(
𝑉 𝑀,𝛼
𝑇

) ≤ lim inf
𝑇→∞

1
𝑇
log

(
𝑉 ∗,𝑀,𝛼
𝑇

)
= lim inf

𝑇→∞
1
𝑇
log

(
𝑉 𝑀,𝛼
𝑇

(𝜈)
)
. (66)

On the other hand, by the definition of (𝑉 𝑀,𝛼
𝑡 )𝑡≥0 as log-optimizer within the class 𝑀,𝛼

𝔼
[
log

(
𝑉 𝑀,𝛼
𝑇

(𝜈)
)] ≤ sup

𝜋𝐺∈𝑀,𝛼

𝔼
[
log

(
𝑉 𝜋𝐺

𝑇

)]
= 𝔼

[
log

(
𝑉 𝑀,𝛼
𝑇

)]
(67)

holds. Concerning the first inequality, note that the universal portfolio to build the wealth 𝑉 𝑀,𝛼
𝑇

(𝜈) is

given by (45). By the time-homogenous Markovianity it is thus sufficient to dominate the left-hand

side of (67) by taking the supremum over elements in 𝑀,𝛼 .

Combining now (67), Theorem 4.9 and (66) yields,

𝔼
[
lim inf
𝑇→∞

1
𝑇
log

(
𝑉 𝑀,𝛼
𝑇

(𝜈)
)] ≤ lim inf

𝑇→∞
1
𝑇
𝔼

[
log

(
𝑉 𝑀,𝛼
𝑇

(𝜈)
)]

≤ lim
𝑇→∞

1
𝑇
𝔼

[
log

(
𝑉 𝑀,𝛼
𝑇

)]
= lim

𝑇→∞
1
𝑇
log

(
𝑉 𝑀,𝛼
𝑇

)
≤ lim inf

𝑇→∞
1
𝑇
log

(
𝑉 𝑀,𝛼
𝑇

(𝜈)
)
, ℙ-a.s.,
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where the first inequality follows from Fatou's lemma. From this, we see that

lim inf
𝑇→∞

1
𝑇
log

(
𝑉 𝑀,𝛼
𝑇

(𝜈)
)

is ℙ-a.s. constant and equal to lim𝑇→∞
1
𝑇
log(𝑉 𝑀,𝛼

𝑇
). Hence the assertion is proved. □

As in the previous section, we can formulate a result not depending explicitly on the constant 𝑀

on 𝛼. Setting 𝛼 = 1
𝑀

we choose for 𝑀 = 1, 2, 3,… a measure 𝑚𝑀 on 𝑀,
1
𝑀 with full support. Define

𝑚 =
∑∞

𝑀=1 2
−𝑀𝑚𝑀 and the process 𝑉 (𝜈) by

𝑉𝑇 (𝜈) = ∫⋃∞
𝑀=1 𝑀,

1
𝑀

𝑉 𝐺
𝑇
𝑚(𝑑𝐺).

In order to compare the performance with the one of the global log-optimal portfolio, whenever it

is functionally generated, we combine the above results with Proposition 4.7.

Corollary 4.13. Let (𝜇𝑡)𝑡≥0 be a stochastic process of form (47) satisfying Assumption 4.8. Moreover,
suppose that 𝜆 and 𝑐 satisfy (61) and

𝜆(𝑥) = ∇𝐺(𝑥)
𝐺(𝑥)

, (68)

𝐿 = 1
2 ∫Δ𝑑

∇𝐺(𝑥)
𝐺(𝑥)

𝑐(𝑥)∇𝐺(𝑥)
𝐺(𝑥)

𝜚(𝑑𝑥) < ∞ (69)

for some concave function 𝐺 ∈ 𝐶2(Δ̄𝑑). Then we have ℙ-a.s.

lim
𝑀→∞

lim
𝑇→∞

1
𝑇
log

(
𝑉

∗,𝑀,
1
𝑀

𝑇

)
= lim

𝑇→∞
1
𝑇
log

(
𝑉𝑇 (𝜈)

)
= lim

𝑇→∞
1
𝑇
log(𝑉𝑇 ) = 𝐿. (70)

Proof. Note first that 𝐿 is well-defined due to (69). Furthermore, note that for every 𝜀 > 0, there exists

some 𝑀 > 0 and some function 𝐺 ∈ 𝑀,
1
𝑀 such that

lim
𝑇→∞

1
𝑇
log

(
𝑉 𝐺
𝑇

) ≥ lim
𝑇→∞

1
𝑇
log(𝑉𝑇 ) + 𝜀.

Indeed this simply follows from continuity of 𝐺 → 𝑉 𝐺 as asserted in Lemma 4.4 and by choosing

𝐺 ∈ 𝑀,
1
𝑀 close enough with respect to the ‖ ⋅ ‖𝐶2,0 to the optimizing function 𝐺 ∈ 𝐶2(Δ̄𝑑) whose

generated portfolio yields 𝑉 due to (68) and Proposition 4.7. By Theorem 4.12, we can therefore con-

clude (following the proof of Corollary 3.11) that

lim
𝑀→∞

lim inf
𝑇→∞

1
𝑇
log

(
𝑉

∗,𝑀,
1
𝑀

𝑇

)
= lim inf

𝑇→∞
1
𝑇
log(𝑉𝑇 (𝜈)) = lim

𝑇→∞
1
𝑇
log(𝑉𝑇 ) = 𝐿 (71)

holds true. As Theorem 4.11 implies that

lim sup
𝑇→∞

1
𝑇
log𝑉𝑇 (𝜈) = lim

𝑀→∞
lim sup
𝑇→∞

1
𝑇
log𝑉

∗,𝑀,
1
𝑀

𝑇
,
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the assertion is proved if

lim sup
𝑇→∞

1
𝑇

(
log𝑉𝑇 (𝜈) − log𝑉𝑇

)
= lim sup

𝑇→∞

1
𝑇
log

(
𝑉𝑇 (𝜈)
𝑉𝑇

)
= 0, ℙ-a.s. (72)

By the considerations of Section 4.2.3 (see also Becherer, 2001, proposition 4.3), it follows that

(𝑉𝑡(𝜈)
𝑉𝑡

)𝑡≥0 is a nonnegative supermartingale. It converges ℙ-a.s. to a finite limit as 𝑡 → ∞. This in turn

implies (72) and proves the statement. □

Finally, a similar result can be obtained by restricting the log-optimal portfolio to the class of 𝐶2-

functionally generated portfolios without imposing the drift condition in Proposition 4.7. We denote

by 𝑉
𝑓𝑢𝑛

𝑇
the wealth process of the log-optimal portfolio among concave 𝐶2-functionally generated

portfolios, that is, 𝜋𝑓𝑢𝑛 is defined as in (60), however by taking the argmax over all concave 𝐶2-

functionally generated portfolios.

Corollary 4.14. Let (𝜇𝑡)𝑡≥0 be a stochastic process of form (47) satisfying Assumption 4.8. Moreover,
suppose that (61) and (62) hold true. Then

lim
𝑀→∞

lim inf
𝑇→∞

1
𝑇
log𝑉

∗,𝑀,
1
𝑀

𝑇
= lim inf

𝑇→∞
1
𝑇
log𝑉𝑇 (𝜈) = lim

𝑇→∞
1
𝑇
log𝑉 𝑓𝑢𝑛

𝑇
, ℙ-a.s. (73)

Proof. The proof is the same as the first part of Corollary 4.13 up to (71). Note that we cannot get

rid of the lim inf because the supermartingale argument from the proof of Corollary 4.13 does not

hold. □

ACKNOWLEDGMENTS
The authors wish to thank the anonymous referees and the associated editor for their useful com-

ments. Parts of this paper were written while Cuchiero was visiting ETH Zürich; she is grateful to the

Forschungsinstitut für Mathematik.

ENDNOTES
1 Henceforth, we only use the terminology log-optimal portfolio.

2 Here, the portfolio weight 𝜋𝑡 is chosen at time 𝑡 − 1 and is used over the time interval [𝑡 − 1, 𝑡].
3 We are grateful to one of anonymous referees for pointing this out.

4 Later we will use 𝑉 to denote instead the relative wealth of the portfolio.

5 Here, it is assumed implicitly that the stocks do not pay dividends. This assumption is common in universal and SPT

and allows us to focus on the main ideas.

6 A comparison between the log-optimal portfolio and Cover's universal portfolio is studied in Ichiba et al. (2011).

7 To simplify the notations, we will suppress 𝜔.

8 By a slight abuse of notation, we here write 𝜋 although we do not restrict to long-only portfolios as in Section 2.3.
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APPENDIX: PROOFS OF CERTAIN RESULTS AND LEMMAS
Proof of Theorem 2.1. Fix 𝑇 > 0 and the trajectory 𝑠 = (𝑠1𝑡 ,… , 𝑠𝑑𝑡 )

𝑇
𝑡=0 ∈ (ℝ𝑑)𝑇+1. For fixed 𝑠 the

function 𝑏 → 𝑉𝑇 (𝑏)(𝑠) is continuous on Δ̄𝑑 . Hence there is 𝑏̄ = 𝑏̄(𝑠) ∈ Δ̄𝑑 such that

𝑉 ∗
𝑇
(𝑠) = 𝑉𝑇 (𝑏̄)(𝑠). (A1)

In fact, condition (9) implies that the sequence of functions (𝑏 → 1
𝑇
log𝑉𝑇 (𝑏))∞𝑇=1 is Lipschitz on Δ̄𝑑 ,

uniformly in 𝑇 ∈ ℕ and 𝑠 satisfying (9) for some fixed constants 𝐶 > 𝑐 > 0.

Indeed, consider the distance on Δ̄𝑑 defined by ‖𝑏 − 𝑏̃‖1 = ∑𝑑
𝑗=1 |𝑏𝑗 − 𝑏̃𝑗|. Then we may estimate

|||| 1𝑇 log𝑉𝑇 (𝑏) −
1
𝑇
log𝑉𝑇 (𝑏̃)

|||| ≤ (log(𝐶) − log(𝑐))‖𝑏 − 𝑏̃‖1.
For 𝜖 > 0, we may therefore define 𝛿 ∶= 𝑐𝜖

𝐶
> 0 such that, for every 𝛿-neighborhood 𝑈 (𝑏̄) around any

𝑏̄ ∈ Δ̄𝑑 we have

1
𝑇
log𝑉𝑇 (𝑏) ≥ 1

𝑇
log𝑉𝑇 (𝑏̄) − 𝜖

for every 𝑏 ∈ 𝑈 (𝑏̄). If the probability measure 𝜈 has full support, we also may find 𝜂 = 𝜂(𝜖, 𝑐, 𝐶) > 0
such that each such 𝛿-neighborhood 𝑈 (𝑏̄), where 𝑏̄ runs through Δ̄𝑑 , satisfies 𝜈(𝑈 (𝑏̄)) > 𝜂. Using (A1)

we therefore may conclude, similarly as in (A8), that (8) holds true, uniformly in 𝑠 = (𝑠1𝑡 ,… , 𝑠𝑑𝑡 )
∞
𝑡=0

satisfying (9) for some fixed constants 𝐶 > 𝑐 > 0. □

Proof of Lemma 3.8. Let 𝜋 ∶ Δ𝑑 → Δ̄𝑑 be the optimizer of (18) and define, for 0 < 𝜖 < 1,

𝜋𝜖 = (1 − 𝜖)𝜋 + 𝜖
( 1
𝑑
,… ,

1
𝑑

)
.

Note that 𝜋𝜖 takes values in Δ̄𝑑
𝜖 (see Definition 3.1), which is crucial for the subsequent arguments and

the reason why we do not directly work with 𝜋. Also note that, for 𝑝 ∈ Δ̄𝑑
𝜖 , we have

⟨
𝑝,

𝑦

𝑥

⟩
=

𝑑∑
𝑗=1

𝑝𝑗
𝑦𝑗

𝑥𝑗
≥ 𝜖

𝑑
(A2)

for 𝑥, 𝑦 ∈ Δ𝑑 , as at least one of the terms
𝑦𝑗

𝑥𝑗
is greater than or equal to one.

https://doi.org/10.1111/mafi.12201
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The average performance 𝐿𝜋𝜖 defined via (22) for the portfolio map 𝜋𝜖 is still almost as good as the

optimal average performance 𝐿 ≡ 𝐿𝜋 :

𝐿𝜋𝜖 = ∫Δ𝑑

[
∫Δ𝑑

log
(⟨

𝜋𝜖(𝑥),
𝑦

𝑥

⟩)
𝜚(𝑥, 𝑑𝑦)

]
𝑑𝜚(𝑥)

≥ ∫Δ𝑑

[
∫Δ𝑑

log
(
(1 − 𝜖)

⟨
𝜋(𝑥), 𝑦

𝑥

⟩)
𝜚(𝑥, 𝑑𝑦)

]
𝑑𝜚(𝑥) (A3)

≥ 𝐿 + log(1 − 𝜖).

To approximate 𝜋𝜖 by a Lipschitz function 𝜋𝐿𝑖𝑝 taking its values in Δ̄𝑑
𝜖 , we need some preparation.

By Assumption 3.6, we can find 𝛿 > 0 such that, for 𝐴 ⊆ Δ𝑑 ,

∫𝐴
[
∫Δ𝑑

(
log

(
𝜖

𝑑

)
− log

(⟨
𝜋𝜖(𝑥),

𝑦

𝑥

⟩))
𝜚(𝑥, 𝑑𝑦)

]
𝑑𝜚(𝑥) > −𝜖 (A4)

provided that 𝜚[𝐴] < 𝛿. In particular, we may find 𝜂 > 0 such that

∫Δ𝑑∖Δ̄𝑑
𝜂

[
∫Δ𝑑

(
log

(
𝜖

𝑑

)
− log

(⟨
𝜋𝜖(𝑥),

𝑦

𝑥

⟩))
𝑑𝜚(𝑥, 𝑦)

]
𝑑𝜚(𝑥) > −𝜖. (A5)

Now we find a Lipschitz function 𝜋𝐿𝑖𝑝 ∶ Δ𝑑 → Δ̄𝑑
𝜖 such that

‖𝜋𝐿𝑖𝑝(𝑥) − 𝜋𝜖(𝑥)‖1 = 𝑑∑
𝑗=1

|𝜋𝐿𝑖𝑝(𝑥)𝑗 − 𝜋𝜖(𝑥)𝑗| < 𝜂𝜖2 (A6)

for all 𝑥 ∈ Δ𝑑∖𝐴, where the exceptional set 𝐴 satisfies 𝜚[𝐴] < 𝛿. Indeed, the functions from ℝ𝑑 →
Δ̄𝑑
𝜖 which are continuously differentiable in a neighborhood of Δ𝑑 are dense with respect to the

𝐿1(ℝ𝑑, 𝜚;ℝ𝑑)-norm. Let 𝑀 be a Lipschitz constant for 𝜋𝐿𝑖𝑝 such that 𝑀−1 ≤ 𝜖.

To estimate 𝐿𝜋𝐿𝑖𝑝 − 𝐿𝜋𝜖 we argue separately on the sets Δ𝑑∖Δ̄𝑑
𝜂 , 𝐴 ∩ Δ̄𝑑

𝜂 and Δ̄𝑑
𝜂∖𝐴. To start with

the latter set note that, for 𝑥 ∈ Δ̄𝑑
𝜂 and 𝑦 ∈ Δ𝑑 we have that the function

𝑝 →
⟨
𝑝,

𝑦

𝑥

⟩
=

𝑛∑
𝑖=1

𝑝𝑗
𝑦𝑗

𝑥𝑗
, 𝑝 ∈ Δ̄𝑑

is Lipschitz on Δ̄𝑑 with Lipschitz constant bounded by ( 𝜂
𝑑
)−1. From (A6), we get

∫Δ̄𝑑
𝜂 ∖𝐴

[
∫Δ𝑑

(
log

(⟨
𝜋𝐿𝑖𝑝(𝑥),

𝑦

𝑥

⟩)
− log

(⟨
𝜋𝜖(𝑥),

𝑦

𝑥

⟩)
𝑑𝜚(𝑥, 𝑦)

]
𝑑𝜚(𝑥) (A7)

≥ −(𝜂 ⋅ 𝜖2)
( 𝜂

𝑑

)−1 (
𝜖

𝑑

)−1 ≥ −𝑑2𝜖.

The term ( 𝜖
𝑑
)−1 above comes from the fact that ⟨𝜋𝐿𝑖𝑝(𝑥), 𝑦𝑥 ⟩ as well as ⟨𝜋𝜖(𝑥), 𝑦𝑥⟩ takes values in [ 𝜖

𝑑
,∞[

and the function 𝑧 → log(𝑧) is Lipschitz on this set with constant ( 𝜖
𝑑
)−1.
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As regards the set 𝐴 ∩ Δ̄𝑑
𝜂 we obtain from (A2) and (A4) the estimate

∫𝐴∩Δ̄𝑑
𝜂

[
∫Δ𝑑

(
log

(⟨
𝜋𝐿𝑖𝑝(𝑥),

𝑦

𝑥

⟩)
− log

(⟨
𝜋𝜖(𝑥),

𝑦

𝑥

⟩)
𝑑𝜚(𝑥, 𝑦)

]
𝑑𝜚(𝑥) ≥ −𝜖 (A8)

and a similar estimate holds true for the set Δ𝑑∖Δ̄𝑑
𝜂 by (A5). Hence, we obtain from (A3), (A7),

and (A8)

𝐿𝜋𝐿𝑖𝑝 ≥ 𝐿 + log(1 − 𝜖) − 𝑑2𝜖 − 2𝜖.

As 𝜖 > 0 is arbitrary, we have proved Lemma 3.8. □

Proof of Lemma 4.1. This follows from the fact that the embedding from 𝐶2,𝛼(Δ̄𝑑) → 𝐶2,𝛼′ (Δ̄𝑑) is

compact for 𝛼′ < 𝛼 (see, e.g., Dobrowolski, 2010, satz 2.42). This means in particular that any bounded

set in 𝐶2,𝛼(Δ̄𝑑) is totally bounded in 𝐶2,0(Δ̄𝑑), thus relatively compact. To prove compactness it thus

suffices to prove that 𝑀,𝛼 is closed. Take a sequence 𝐺𝑛 ∈ 𝑀,𝛼 converging to 𝐺 with respect to the‖ ⋅ ‖𝐶2,0 norm. Then, we can estimate ‖𝐺‖𝐶2,𝛼 by

‖𝐺‖𝐶2,𝛼 = ‖𝐺‖𝐶2,0 + max|𝐤|=2 sup𝑥≠𝑦
|𝐷𝐤𝐺(𝑥) −𝐷𝐤𝐺(𝑦)|‖𝑥 − 𝑦‖𝛼

≤ ‖𝐺 − 𝐺𝑛‖𝐶2,0 + ‖𝐺𝑛‖𝐶2,0

+ max|𝐤|=2 sup𝑥≠𝑦
|𝐷𝐤𝐺(𝑥) −𝐷𝐤𝐺𝑛(𝑥)| + |𝐷𝐤𝐺𝑛(𝑥) −𝐷𝐤𝐺𝑛(𝑦)| + |𝐷𝐤𝐺𝑛(𝑦) −𝐷𝐤𝐺(𝑦)|‖𝑥 − 𝑦‖𝛼

for any 𝑛 ∈ ℕ. Letting 𝑛 → ∞ and using the fact that ‖𝐺𝑛 − 𝐺‖𝐶2,0 → 0 yields ‖𝐺‖𝐶2,𝛼 ≤ 𝑀 . Simi-

larly, we obtain 𝐺 ≥ 1
𝑀

. This together with the fact that 𝐺 is concave as a limit of concave functions

proves 𝐺 ∈ 𝑀,𝛼 and thus in turn compactness of 𝑀,𝛼 with respect to ‖ ⋅ ‖𝐶2,0 . □

Proof of Lemma 4.4. For 𝐺,𝐺 ∈ 𝑀,𝛼 , we have

log
(
𝑉 𝐺
𝑇

)
− log

(
𝑉 𝐺
𝑇

)
= log(𝐺(𝜇𝑇 )) − log(𝐺(𝜇𝑇 )) − (log(𝐺(𝜇0)) − log(𝐺(𝜇0)))

− ∫
𝑇

0

(∑
𝑖,𝑗

𝐷𝑖𝑗𝐺(𝜇𝑡)
2𝐺(𝜇𝑡)

−
𝐷𝑖𝑗𝐺(𝜇𝑡)
2𝐺(𝜇𝑡)

)
𝑑[𝜇𝑖, 𝜇𝑗]𝑡

= log(𝐺(𝜇𝑇 )) − log(𝐺(𝜇𝑇 )) − (log(𝐺(𝜇0)) − log(𝐺(𝜇0)))

−
∑
𝑖,𝑗

∫
𝑇

0

⎛⎜⎜⎜⎝
𝐷𝑖𝑗𝐺(𝜇𝑡) −𝐷𝑖𝑗𝐺(𝜇𝑡)

2𝐺(𝜇𝑡)
+
𝐷𝑖𝑗𝐺(𝜇𝑡)

(
𝐺(𝜇𝑡) − 𝐺(𝜇𝑡)

)
2𝐺(𝜇𝑡)𝐺(𝜇𝑡)

⎞⎟⎟⎟⎠ 𝑑[𝜇
𝑖, 𝜇𝑗]𝑡.

Hence, using the fact that ‖𝐺‖𝐶2,0 ≤ 𝑀 as well as 𝐺 ≥ 1
𝑀

and 𝐺 ≥ 1
𝑀

and that 𝑧 → log(𝑧) is Lipschitz

continuous on [ 1
𝑀
,∞) with constant 𝑀 , we obtain the estimate
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||||log (
𝑉 𝐺
𝑇

)
− log

(
𝑉 𝐺
𝑇

)|||| ≤ 2𝑀‖𝐺 − 𝐺‖𝐶2,0

+
(
𝑀

2
𝑑2‖𝐺 − 𝐺‖𝐶2,0 + 𝑀3

2
𝑑2‖𝐺 − 𝐺‖𝐶2,0

)
max
𝑖
[𝜇𝑖, 𝜇𝑖]𝑇 . (A9)

This proves the asserted continuity. □


