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Here, we document a detailed characterisation of two zircon gemstones, GZ7 and GZ8. Both stones had the same mass
at 19.2 carats (3.84 g) each; both came from placer deposits in the Ratnapura district, Sri Lanka. The U-Pb data are in
both cases concordant within the uncertainties of decay constants and yield weighted mean 2°Pb/238U ages (95%
confidence uncertainty) of 530.26 Ma + 0.05 Ma (GZ7) and 543.92 Ma + 0.06 Ma (GZ8). Neither GZ7 nor GZ8
have been subjected to any gem enhancement by heating. Structure-related parameters correspond well with the
calculated alpha doses of 1.48 x 10'® g' (GZ7) and 2.53 x 10'8 g'' (GZ8), respectively, and the (U-Th)/He ages of
438 Ma + 3 Ma (2s) for GZ7 and 426 Ma = 9 Ma (2s) for GZ8 are typical of unheated zircon from Sri Lanka. The
mean U mass fractions are 680 ng g™' (GZ7) and 1305 pg g™' (GZ8). The two zircon samples are proposed as
reference materials for SIMS (secondary ion mass spectrometry) U-Pb geochronology. In addition, GZ7 (Ti mass fractions
25.08 ug g + 0.18 pg g™'; 95% confidence uncertainty) may prove useful as reference material for Ti-in-zircon
temperature estimates.
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In situ microprobe geochronology by means of SIMS
(secondary ion mass spectrometry; Compsfon et al. 1984,
Williams 1998) is a comparative method. That is, results of
analyses of unknowns need to be calibrated against
equivalent analyses of a well-characterised reference mate-
rial. Such materials need to be exceptionally homogeneous
in isofopic composition, on a scale smaller than the size of
SIMS analysis pits (typically comprising ~ 1 ng of material).
For zircon (ZrSiOy; tetragonal space group #41/amd) U-Pb
geochrono|ogy, however, suitable synfheﬂc reference mate-
rials that meet the above requirement are currently not
available. To the best of our knowledge, no homogeneous
Pb-doped ZrSiO4 crystal has been synthesised thus far. This
is explained by the broadly incompatible behaviour of Pb in
zircon (Watson et al. 1997). Homogeneous Pb-doped
Z:SiO, glass can be synthesised with relative ease, but it is
unsuitable as SIMS reference material because the sputter-
ing behaviour of a glass under the O, beam differs
appreciably from that of the unknown zircon crystals (Stern
and Amelin 2003).

For the above reasons, reference materials for SIMS
zircon U-Th-Pb geochronology are currently limited to well-
characterised natural zircon. Apart from exceptional isofopic
homogeneity, a suitable natural reference material should
have a (close to) concordant U-Pb system and negligible
mass fractions of non-radiogenic Pb (Pidgeon 1997,
Kennedy 2000, Kennedy et al 2014, Nasdala et al
2015, Schohegger et al. 2015). Furthermore, the reference
material’s structural state should be homogeneous and
sufficiently similar to that of the unknowns. The latter
requirement needs to be checked carefully before a natural
zircon sample can be proposed as a new reference
material. On the one hand, a SIMS reference material
should contain sufficiently high mass fractions of radiogenic
Pb. This is advantageous insofar as higher mass fractions
result in better counting statistics, which minimise analytical
uncertainties and may even allow one to decrease the size
of the analysis spots and/or the counting times without losing
measurement precision. On the other hand, the emplace-
ment of radiogenic Pb nuclei in the zircon laftice is a
destructive process (note that alpha recoils are short-distance
implantations; Weber 1990, Weber et al. 1994, Devo-
nathan et al 2006, Valley et al. 2015). Therefore, higher
mass fractions of radiogenic Pb are typically associated with
higher degrees of accumulated selfirradiation damage,
provided no structural reconstitution through thermal anneal-
ing has occurred (compare Nasdala et al 2001). Radiation
damage will not necessarily affect the material's U-Th-Pb
isotopic system: even though elevated levels of structural
damage enhance the susceptibility of zircon to secondary
loss of radiogenic Pb (Krogh and Davis 1975, Nasdala

et al 1998, Davis and Krogh 2001, Horie et al. 2006), it is
well known that radiation damage alone does not cause
any Pb loss (note that amorphised but nevertheless concor-
dant zircon has been described by Nasdala et al 2002,
2014, Kosfrovitsky et al 2016). However, the pofenﬁa|
problem caused by too high levels of radiation damage in
the reference material is that significantly different structural
states of unknowns and reference material may result in
‘matrix effects’, that is, different ionisation yie|o|s and/or U and
Pb fractionation during SIMS analysis. Finding a suitable
reference material may therefore be a bo|oncing act, as the
material should contain enough radiogenic Pb, but sfill
should not have too much radiation damage.

In addition, a suitable SIMS reference material should
not have internal fractures, cracks and inclusions, a prereq-
visite met by highest quality zircon gemstones. SIMS has a
comparably low demand of reference material (typically
100 pum chip will suffice for a 1-day measurement session);
on the other hand, unknowns and the reference material
always need to be placed in the same sample mount, which
increases the consumption. The intended distribution of
multitudes of tiny reference chips to several SIMS laboratories
is possible only if a sufficient quantity of material is available.
In view of the above, and given the high analytical effort for
characterising thoroughly o potential reference material,
gemstones fo be considered should be sufficiently large.
Here, we present measurement results chqracterising two

large zircon gemstones from Sri Lanka, GZ7 and GZ8.

Samples and preparation

General description

Zircon samples GZ7 and GZ8 were purchased in 2014
and 2015 from gem traders as cut and faceted gemstone
specimens. In our experience, this approach is most
expedient. The polished faces of a gem are perfect windows
that allow one to examine the specimen’s interior, whereas a
rough stone cannot be checked in sufficient detail. For
reasons elucidated above, our search was focused on large
(> 15 ct/> 3 g) gemstones only. Stones to be purchased
were first placed in an immersion liquid and carefully
inspected with a 10x magnifying lens. Only specimens
without visible zoning and seemingly free of inclusions were
considered. The shorflisted stones were then subjected to
rough mass density measurement and analysis of the
degree of broadening of Raman bands. For the semiquan-
titative evaluation of results that were obtained with a rather
basic Raman system in o gem-esting laboratory in
Colombo, whose apparatus function (i.e, instrumental band

broadening) was unknown, well-characterised reference
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samples were analysed with the same system. Moderately
decreased mass densities (ca. 4.65-4.50 g cm™) and
moderately broadened Raman bands were taken as
evidence for significant, but not too high, radiation damage.
This, in tum, may indicate the presence of suitably high levels
of U and Pb and allows one to exclude thermal gem

enhancement.

Based on promising preliminary tesfs, two gemsfones
(GZ7 and GZ8) were purchased. Both originated from
placer deposits in the Ratnapura district, Sri Lanka
(Dahanayake and Ranasinghe 1985, Zoysa 2014). The
presumable source area belongs to the Highland Complex
(Cooray 1994, Kréner et al. 1994, Mathavan and Fer-
nando 2001), which is dominated by Proterozoic rocks that
have experienced high-grade (partially ultrahigh-tempera-
ture) metamorphism during the Pan-African event at ca.
550 Ma (Sajeev et al. 2010, Dharmapriya et al. 2017, and
references therein). The primary source rocks of the gem

zircon specimens, however, remain unknown to date.

The two specimens GZ7 and GZ8 had oval cut,
maximum dimensions of 16.8 and 159 mm, respecﬁve|y,
and exactly the same mass of 192 cf (3.84 g) each
(Table 1). Both stones dppeored unzoned and flawless, that
is, clear and free of inclusions. GZ7 was light brown to dark
yellow, with orange hue; GZ8 was yellowish green
(Figure 1a). According to the traders, these colours were
natural and no heat treatment for colour enhancement had
ever been applied.

Sample preparation

The two stones were cut info ~ 2.8-mm-thick slices using
a Struers AWST abrasive wire saw, with a 0.17-mm-
diameter high-grade steel wire coated with 20 pm dia-
mond grains (Well Diomontdrohtsdgen GmbH, Mannheim).
The slicing was done perpendicular to the longest dimension
of the gemstone (Figure 1 b) to minimise mass loss, that is, the
crystallographic orientation was not considered. After wash-
ing in pure ethanol and ultrasonic cleaning in distilled water,
some slices were loaded info a high-alloy steel cylinder and
piston (steel type 1.2842 9OMnCwV 8; Figure 1c) and
fractured by gently applying pressure in a mechanical
squeezing machine. One large slice per sample was
polished on one side, for EPMA (electron probe microanal-
ysis), LAICP-MS (laser ablation-inductively coupled plasma-
mass spectromefry) and spectroscopic measurements. For
this, the slices were attached to a round one-inch glass slide
using acetone-soluble glue, surrounded by an acrylic glass
ring of corresponding thickness. Fine grinding of these two
prepared slices was done using diamond-coated stainless
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steel discs, and polishing was done with 3 and 1 um
diamond powder on cloth (whereas polishing on non-
ferrous metal discs could introduce minor amounts of Pb to
the materials). After ﬁnishing the onc1|yses, slices were
detached from their glass slides and, after removal of
remnant carbon by mechanical polishing, were subjected to

ethanol washing and ultrasonic cleaning.

To estimate the degree of radiation damage and
associated parameter changes, small chips of GZ7 and
GZ8 were subjected to dry heating in air at 1400 °C for
96 h for structural reconstitution. Samples were placed in a
Pt crucible (note that annealing zircon in an alumina crucible
may, as an analytical artefact, result in surficial decompo-
sition into oxides; Vdczi et al 2009) and heated at a rate of
30 °C min™' to the designated temperature. After 4 days,
the furnace was shut off and samples cooled slowly. Slow
heating and cooling were preferred to avoid the possible
build-up of strain during shock heating or quenching.

Analytical techniques

Electron probe microanalysis imaging and major-
element analysis

A JEOL 8900 RL EPMA (Universitit Géttingen) was used
for obtaining BSE (back-scattered electrons) and CL
(cathodoluminescence) images and for determining mass
fractions of major elements by means of wavelength-
dispersive X-ray analysis. Imaging was done by scanning
the fully focused beam at 20 kV accelerating voltage and
50 nA beam current. For point analyses, the system was
operated at 20 kV accelerating voltage and 80 nA beam
current, with the electron beam focused to a 10 pm spot. For
each sample, 84 point analyses were done along two 13
and 8 mm ftraverses (that were oriented perpendicularly to
each other) across the large polished slice. The measured
element-specific lines (with synthetic or natural calibrant
materials and peak/background counting fimes quoted in
brackets) included Al-Ka (Al,O5 120's; 120 s), Si-Ko
(Z1SiO4 15's; 10°s), P-Ka (ScPOy4; 300 s; 300 s), Ca-Ka
(wollastonite; 120's; 120's), Fe-Ka (haematite; 240 s;
240's), Y-lao (YAG, yttrium aluminium gamet; 300 s;
300 s), Zr-la (ZrSiO4 30's; 30 s), Yb-la (YbPO,; 300 s;
300 s), HE-Ma (HSiO4; 60 s; 60 s), Th-Ma (ThSiO4; 300 s;
300 s) and U-Mat (UO,; 300 s; 300 s). Data were reduced
using the CITZAF routine in the JEOL software, which is based
on the ®(pZ) method (Armstrong 1991, 1995). For element
mapping (660 x 450 analyses of GZ7, 650 x 600
analyses of GZ8), the system was operated at 20 kV and
300 nA The beam diameter was 10 um, the step width
was 20 pm, and the dwell time was 100 ms.
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General characterisation of zircon specimens GZ7 and GZ8 (Universitat Wien) and comparison with well-crystalline zircon

Table 1.

434

Reference: Sybnihetic

ZrSiO,4

4,668 + 0.001

6.606 = 0.001
5.977 + 0.001

260.82 + 0.05

1008.1 + 0.5

1.7 £ 02

Reference: Ratanakiri @

4.674 + 0005
0.0004 + 0.0001

6.604 + 0,001
5.979 + 0.001

260.73 + 0.05

1008.0 + 0.5

1.8 +02
11.8 £ 06

143+ 14

Annealed

6.605 + 0.001
5.982 + 0.001

26098 + 0.07

1007.6 + 0.5

21 +03
11.9+10

144+ 10

Zircon GZ8

Natural
19.238/3847.6

15.9/13.4/9.4

253 +0.11
6.673 + 0.002

6.069 + 0.003

4537 + 0.005
27026 + 0.20

996.6 + 0.5

21.1+18
68+7
40 £ 3

Annealed

6.605 + 0.001
5.979 + 0.001

260.82 + 0.08

1007.9 + 0.5

21+03
121 £10
141 £10

Zircon GZ7

Natural
19.238/3847.6

16.8/13.5/7.8

1.48 + 0.07
6.621 + 0.002

6.025 + 0.004

4,658 + 0.005
26412 + 022

1001.8 + 0.5

109 £ 0.6
38+2
33+2

Parameter

t (mm)

h/width/heigh

Lengfl

Weight (ct mg™)

)

9

-3
Unit-cell dimension ap (A)

Mass density (g
Alpha dose (x10'8

)

cm

)

Unit-cell dimension o (A

Unit-cell volume (A3
Raman shift (cm™)

d
d

d
3*) FWHM (em™)

Dy

Raman FWHM (cm™)
PL (Nd®*) FWHM (cm™)

PL (

Quoted uncertainties are 2s.

b Unit-cell parameters for pure, undoped ZrSiO, are from van Westrenen et al. (2004). Unit-cell parameters were converted to a theoretical X-ray density, which is quoted as reference value for the mass density.

@ Mass density, alpha dose and unit-cell parameters for the well-crystallised Ratanakiri, Cambodia, zircon are from Zeug et al. (2018); PL FWHM values are from Lenz and Nasdala (2015).
€ Calculated according to Murakami et al. (1991) from the present U and Th mass fractions and the U-Pb age.

full width at half-maximum. PL data are quoted for the ~ 17210 cm™! sublevel of the “Fg,, — “Hy3/2 emission of Dy** and the ~ 11360 cm™' sublevel of

4 Raman spectral parameters are quoted for the v5(SiO.) Raman band. FWHM

the *F3/2 — “lo/2 emission of Nd®*, respectively.

LA-ICP-MS trace element determination

Trace element deferminations by LAICP-MS were
carried out in three laboratories: the State Key Laboratory
of Lithospheric Evolution, IGG-CAS, Beijing; the Geochemical
Analysis Unit, CCFS/GEMOC, Macquarie University, Sydney;
and the Institute of Geochemistry and Petrology, ETH Zrich.
Analyses in Beijing and Zirich were done on small chips,
whereas analyses in Sydney were randomly placed on the
large polished slabs used for EPMA. At IGG-CAS, a Geolas
193 nm excimer laser was used for ablating samples, and
analyses were done by means of an Agilent 7500a ICP-MS
system. The analytical details were equivalent to those
described by Xie et al (2008). At Macquarie University, a
Photon Machines Excite 193 nm ArF excimer laser coupled
to an Agilent 7700x ICP-MS was used. The method has
been described by Jackson et al (2004). The ablation
conditions included 50 pum beam size, 5 Hz pulse rate and
7.59 J cm™ energy density. Ablation was performed in a
HelEx Il cell, and He was used as the carrier gas at a fotal
flow rate of 0.825 | min"'. Typical measurement runs
consisted of twenty analyses with four analyses of reference
materials and twelve analyses of unknowns bracketed by
two onc1|yses of NIST SRM 610 (Jochum et al. 2011) at the
beginning and end of each run. Analyses consisted of 60 s
of background and 120 s of ablation. Trace element mass
fractions were calculated from the raw signal data using the
online software package GLUTTER (Griffin et al 2008). Zr
was used as an internal standard to quantify frace element
mass fractions, and BCR-2 (Jochum et al. 2016) and NIST
SRM 612 (Jochum et al 2011) were used as secondary
reference materials. At ETH, only GZ7 was analysed.
Measurements were performed with an ASI Resolution
155 laser ablation system (193 nm Arf excimer laser)
coupled to a Thermo Element XR sector-field ICP-MS. Data
were acquired with a repetition rate of 5 Hz and an
ablation spot size of 30 pm. Intensities were recorded for
70 s, which included 30 s gas blank and 40 s sample
signal. The NIST SRM 612 glass was used as primary
reference material, with Si used as intfemal standard. Al data
reduction and mass fraction calculations were performed
using the lolite software package (Paton et al 2011).

Titanium determination (GZ7 only)

Because of the particularly high Ti mass fraction in GZ7,
this sample was subjected to precise Ti analysis by ID
(isotope dilution)-ICP-MS at the Institute of Geochemistry and
Petrology, ETH Zirich. Eleven aliquots of 1-2 mg mass were
dissolved in concentrated HF in a pressure vessel (following
Krogh 1973) with an addition of */Ti=*“Ti spike, repeatedly
dried and redissolved in HF and HCl and subsequently
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Figure 1. Materials and preparation. (a) Photograph
of the two 19.2 ct (3.84 g) zircon gemstones (GZ7:
yellow-brown with orange hue, right; GZ8: yellowish
green, left). (b) Image of GZ7 after slicing (photograph
A. Wagner). (c) High-alloy steel cylinder and piston
used for mechanical fracturing of slices (piston diam-

eter 18 mm).

evaporated to dryness. The dry residues were then dissolved
in HNO3 with a trace of HF, and the resu|ting solutions were
analysed using a Thermo Element XR single-collector ICP-
MS. Details of the analyses including blank and interference
corrections are described elsewhere (Szymanowski et al.

2018).
Mass density determination

Mass densities were determined prior to sample
preparation, by repeated weighing of the gemstones in
distilled water and in air. A minute amount of detergent was

added to the distilled water to decrease surface tension.
Single-crystal X-ray diffraction

Unit-cell parameters were obtained at Universitat Wien
by single-crystal X-ray diffraction analysis of small zircon
chips (150-300 pm). To check for structural effects of
radiation damage, chips of the natural and annealed
samples were analysed. Measurements were done by
means of a Huber 5042 fourircle diffractometer, using
MoKt 5 radiation (A ~0.71 A) from a conventional fine-
focus sealed tube (50 kV, 30 mA). The sample-to-detector
distance was 420 mm. A scintillation counter with variable
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Soller slit was used to measure about 10-20 nonequivalent
Bragg peaks for eight-position centring according to the
method of Hamilton (1974). The software SINGLE (Ange|
and Finger 201 1) was used for diffractometer control and for
calculation of lattice parameters by applying refinements
with symmetry-constraint vector least squares. The diffrac-
tometer was checked and corrected for systematic errors
using the NIST SRM 1990 ruby-sphere standard (Wong-Ng
et al 2001).

Spectroscopy

Raman and laser-induced PL (photoluminescence) spec-
tra were obtained at Universitat Wien using a dispersive
Horiba LabRAM HR Evolution system equipped with an
Olympus BX41 optical microscope, a grating with 1800
grooves per mm and a Si-based, Peltier-cooled charge-
coupled device (CCD) detector. Point measurements were
done on natural and annealed samples, to check for
structural effects of radiation damage. As reference analyses,
PL measurements were also done on REE**-doped ZrSiO,4
crystals grown using a Li-Mo flux technique (for details see
lenz et al 2015, and references therein). Line scanning
across the large slices was done using a software-controlled
Mérzhduser SCAN x-y stage. Raman spectra were excited
using the 632.8 nm emission of a He-Ne laser (8 mW at the
sample surface). The PL spectra were excited using the
473 nm emission of a diode-pumped solid-state laser
(5 mW at the sample surface) or a frequency-doubled Nd:
YAG laser (532 nm; 10 mW at the sample surface). The
Olympus 100x objective (numerical aperture 0.9) was
used. With the spectrometer system operated in full confocal
mode, the lateral resolution was ~ 1 um, and the spectral
resolution was between ~ 1.5 cm™ in the blue and 0.7 cm’!
in the NIR (near infrared) range of the electromagnetic
spectrum. Wavenumber calibration was done using the
Rayleigh line and Kr-lamp emissions, resulting in a wavenum-
ber accuracy of better than 0.5 cm™. Background-corrected
spectra were fitted assuming Lorentzian-Gaussian band and
line shapes. For FWHM (full width at half-maximum) correc-
tion, the empirical formula (Véczi 2014).

PWHM 2~ FWHM 5. — IPF? /(0.9 x FWHM 06, +0.1 X IPF)
(1

has been applied, where FWHM o = measured (ie,
fited) FWHM of the spectroscopic signal obtained, and
IPF = PWHM of the instrumental profile function.

Unpolarised optical absorption spectra were obtained
from the large slices of GZ7 and GZ8. Note again that
slicing of the stones was done independent from the
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crystallographic orientation, and subjecting large fragments
of the samples to the preparation of oriented slabs, for
obtaining polarised spectra, would have consumed
too much material. Reference measurements were done on
U*"-doped Z1SiO, (for details see Chase and Osmer 1966)
and U5+-confoinin9 zircon, produced by oxidised heating of
crystals from Ratanakiri, Cambodia (Zeug et al 2018).
Spectra were measured at room temperature in transmission
geometry, by means of a Bruker IFS66v/S FTIR spectrometer
equipped with a mirror-optics IR-scope Il microscope.
Circular areas of 200 pm diameter were analysed. The
following combinations of light sources, beam splitters and
defectors were used: Xe lamp, quartz beam splitter and GaP
detector for the range 28000-19400 cm™' (1024 scans;
40 cm™ spectral resolution); W lamp, quartz beam splitter
and Si defector for the range 19400-10000 cm™' (1024
scans; 20 cm™' speciral resolution); W lamp, quartz beam
splitter and Ge defector for the range 10000-5250 cm’
(512 scans; 10 cm™" spectral resolution). Each final optical
absorption spectrum hence consists of a combination of
three subspectra, which were aligned to match in absor-
bance if necessary.

Oxygen isotope determination

Six chips of GZ7 and seven chips of GZ8, with masses in
the range 1.77-3.05 mg, were analysed for oxygen isotope
ratios by laser fluorination gas source spectrometry, at the
University of Wisconsin, Madison. These analyses were done
in three separate sessions. All data presented in Table 3 are
for chips that were analysed without any HF-etching
prefreatment (compare discussion in Valley et ol 2005,
2015, Nasdala et al 2016). Zircon chips were heated by
an infrared laser (A = 10.6 pm) in the presence of BrFs. The
evolved O, gas was cryogenically purified, passed over hot
Hg, converted to CO4 and analysed by means of a dual-
inlet gas source mass spectrometer that has been described
elsewhere (Valley et al 1994, 1995). Measured §'20
values were normalised to the recommended value of 5.80
VSMOW (Vienna Standard Mean Ocean Water) for the
gamet reference material UWG-2 (\/o”ey et al 1995),
which was analysed six or seven times before, and two fimes
after, analyses of GZ7 and GZ8 in each analysis session

(Table 3).
Hafnium isotope determination

76Hf/"7’Hf  and
1761/ 7Hf ratios, were measured by solution isotope
dilution analysis of two chips each of GZ7 and GZ8 at
IGG-CAS, Beijing. After being weighed, chips were dissolved
in HF-HNO3 in high-pressure bombs at 210 °C for 1 week,

Hafnium  mass  fractions, and

then dried down and dissolved again in 3 mol I' HCI.
Sample solutions were then split. About 80% of each initial
sample solufion was used to determine the Hf isotopic
composifion. The remaining about 20% per solution was
spiked with a mixed '7®Lu and "8Hf tracer for determining
the Lu and Hf mass fractions. The spike solution used was
calibrated beforehand against a standard solufion made
from pure metals (chg et al. 2010) that was tested on
several calibrant materials, inc|uo|ing BCR-2 and W-2
(Minker et al. 2001). The chemical purification procedure
of Nebel-Jacobsen et al (2005) and Morel et al (2008)
was applied. Isotope measurements were performed on a
Thermo Scientific Fisher Neptune MCICP-MS system; details
of the procedure have been published elsewhere (Yang
et al. 2010). Instrumental mass bias was corrected offline
using the  exponential  low  and  assuming
79Hf/177Hf = 0.7325. Possible interferences of '7®Yb and
7€y on '7®Hf were corrected for based on the measured
'73Yb and 7Ly values, applying '7°Lu/'7Llu = 002655
and '7%Yb/'7%Yb = 079631 (Vervoort et al 2004). Mea-
sured '76Hf/7Hf ratios were normalised to the recom-
mended value of 0282160 for the Johnson Matthews
Company Hf standard JMC 475 (Nowell et ol 1998),

which was analysed in the same measurement session.
(U-Th)/He geochronology

(U-Th)/He analyses were done at the University of
Arizona at Tucson, to evaluate the retention of rodiogenic
He. Details of the experimental procedure are described
elsewhere (Nasdala et al 2004, Reiners 2005, Guenthner
et al 2016). Because the analysed aliquots were internal
fragments of much larger grains, no alpha ejection correc-
tion was applied.

U-Pb geochronology by ID-TIMS

The U-Pb isotopic ratios and ages were determined by
ID-TIMS (isotope dilution-thermal ionisation mass spectrom-
efry) in five laboratories, inc|uo|ing NIGL (NERC Isotope
Geosciences Laboratory, Keyworth, UK), University of Oslo,
University of Geneva, Boise State University and Princeton
University. For each of the zircon samples GZ7 and GZ8,
small chips were separated from three slabs. Aliquots
consisting of 5-7 fragments (with at least one fragment
from each of the three slabs per sample), with total masses
per aliquot in the range 2.01-2.48 mg, were given to the
five ID-TIMS laboratories for U-Pb analysis. All laboratories
were asked not to subject zircon grains to the CA (chemical
abrasion) method (Mattinson 2005), in order to analyse the
present U-Pb isotope ratios and to quantify any possible
postgrowth Pb loss associated with the material. Also, all
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laboratories were asked to report the isotopic ratios as
measured, that is, without any correction for initial disequi-
librium in 2°Th/?38U (Schérer 1984).

At each |c1borotory, the received frogmenfs were broken
into smaller fragments of the desired size. Zircon fragments
were rinsed with some combination of distilled acetone, 6 N
HCl, pure (Milli-Q) H,O and 3 N HNOj, which varied
slightly depending on the laboratory. Fragments were
placed in a Teflon capsule ~ 200 l in size prior to spiking
with either the EARTHTIME ET535 2°°Pb-?*3U-?%U tracer
(Geneva, Princeton, Boise), or the ET2535 202Phb—29°Ph—
233U-23%U tracer (NIGL) (Condon et al 2015, Mclean
etal 2015), or a laboratory-specific tracer (Oslo; see
below). Zircon was dissolved in 29 mol I HF + 3 mol I’
HNOj3 in pressure vessels for 60-80 h at 210-220 °C.
Dissolved zircon solutions were subsequently dried down,
redissolved in 6 N HCl and converted to chlorides at
185 °C ovemight. U and Pb were isolated by anion
exchange column chromatography AG-1 X8 resin [either
Eichrom or Bio-Rad (Krogh 1973)l. Following ion exchange
chemistry, the U-Pb aliquot was dried down with dilute
(~ 002 mol I HsPO, loaded in a silica ge| emitter
(Gerstenberger and Haase 1997) onto an outgassed,
zone-refined Re filament for isotopic analysis. Specifics of
mass spectrometry vary from |oborc1tory to |oboro1tory; details
for each laboratory are given in online supporting informa-
fion Appendix S1. Data reduction was done using a 228U
decay constant of 155125 x 107° o', a 2*°U decay
constant of 9.84850 x 107'° ¢! (Jaoffey et al 1971) and
a 2%8U/%%%U ratio of 13782 £ 002 (1s) (Hiess et al
2012).

SIMS U-Pb analysis

The homogeneity of the U-Pb isofopic system of zircon
samples GZ7 and GZ8, and their SIMS analysis perfor-
mance (with particular attenfion at potential matrix effects;
White and Ireland 2012), was checked by multiple analyses
using the SHRIMP 1l (Sensitive High—moss Resolution lon
MicroProbe) of the John de Laeter Centre for Isotopic
Research, Perth. Measurements were done in two sessions,
comprising 35/33/30 and 49/26/32 (GZ7/GZ8/M257)
individual analyses, respectively, that were placed on a
multitude of small chips embedded in an epoxy mount.
Details of the instrumental conditions have been described
elsewhere (Kennedy and de Laeter 1994, de Laeter and
Kennedy 1998, Kennedy et al. 2010). The primary, mass-
filkered O, beam (~ 2 nA) was focused to a ~ 15 um
elliptical spot. Data for each spot were collected through the
mass range of ]962r20+, 204ph* bockground (204.1),
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206ppy+  207pp+ 208ppr 238yt 2487h 3¢ gnd 2540,
Analyses consisted of seven cycles through these nine
masses. The mass resolution, M/AM, was better than
5000. Results were calibrated against reference zircon
M257 with an assumed 2%°Pb/?%8U age of 561.3 Ma
(Nasdala et al. 2008).

The 2%*Pb method was used for common Pb correction
(Compston et al. 1984, see also Ireland and Williams
2003), based on the relevant common Pb compositions from
the model curve of Stacey and Kramers (1975). The high Th/
U of GZ7 prevented use of the 2°2Pb common Pb correction
method (Compston et al. 1984). The correction for instru-
mental Pb/U fractionation was done based on the formula
of Claoué-long et al (1995).

QOGPb+/238U+ _ 0(238uléo+/238u+)b (2)

using the parameter values (a, b) of Black et al (2003). Data
reduction and processing were done with the Excel macro
Squid 2 (Ludwig 2009). For conversion of U-Pb isotopic
ratios info ages and preparation of Wetherill Concordia
diagrams (Wetherill 1956), the U decay constants of Jaffey
et al (1971) were used, along with the relevant common Pb
compositions from the model curve of Stacey and Kramers
(1975). Plotting and age calculations were done using the
Excel macro Isoplot (Ludwig 2003).

Results and discussion

Chemical composition

The element distribution within GZ7 and GZ8 appeared
Wio|e|y homogeneous. The BSE and CL images (not shown)
and element maps (Figure 2) obtained in the EPMA did not
reveal any growth zoning or other features of internal
heterogeneity. Also, multiple trace element analyses in three
(GZ7; n = 56) and two laboratories (GZ8; n = 28), respec-
tively, did not show significant differences across and among
the slabs and chips analysed. However, counting statistics in
the EPMA element distribution maps is poor and faint
differences in the trace element mass fractions are obscured
by the signal noise. Quantitative EPMA line profiles across
the large sample slabs (see Appendices S2 and S3)
revealed slight systematic differences in U (both samples),
Th (especially GZ7) and Hf (especially GZ8) mass fractions
at the outer rims of the slabs. Although some systematic trend
is observable, it has to be pointed out that the 2s errors
(single point errors calculated by counting statistics) do
overlap for most EPMA analysis points at each slab (see
Appendix S3).
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The EPMA and LA-ICP-MS Results are listed in Table 2.
In general, both samples contain low levels of nonformula
elements, with Hf being the only consfituent with a mass
fraction higher than 1%. The different Ti mass fractions
(Table 2) suggest different formation temperatures for the
two somp|es (ca. 830 °C for GZ7 and ca. 720 °C for
GZ8; based on the Ti-in-zircon thermometer of Watson
et al 2006), which in tumn suggests that the two somp|es
were derived from different host rocks. The U mass fractions
(Gz7, 680 ngg' +31 ngg'; GZ8, 1305 ug g’ +
57 ng g') correspond to those of other Sri Lankan gem
zircon, which typically have U mass fractions in the (0.0x—
0x)% range (Murakami et al 1991, Nasdala et al. 2004,
2008, 2016). The U mass fraction of GZ8, however, is
higher than in any other SIMS U-Pb reference zircon. The
Th/U mass fraction ratios (GZ7, 0.90; GZ8, 0.18) are
significantly different, which also may indicate that the two
specimens came from different source rocks. The REE (rare
earth element) pattems of the two samples, in contrast, are
faidy similar (Figure 3). There is a general increase in C1-
normalised mass fractions towards the heavy REE, with
positive Ce anomalies and negative Eu anomalies. The
slightly higher positve Ce anomaly of GZ7 (Ce/
Ce* = 13.3) compared to GZ8 (Ce/Ce* = 5.86) seems
to correspond well with the slightly weaker Eu anomaly of
GZ7 (Eu/Eu* = 0.20) compared to GZ8 (Eu/Eu* = 0.05),
both indicating somewhat more oxidising conditions in the
formation of GZ7.

Zircon GZ7

Zircon GZ8

Zircon GZ7

Zircon GZ8

The ID-ICP-MS analyses of GZ7 yielded uniform Ti mass
fractions of 2508 ng g™ +0.18 ug g (Figure 4). The Ti
homogeneity in GZ7 was further supported by results of 64
LA-ICP-MS analyses placed at seven chips of GZ7, whose
mean “°Ti/?%Si rafio had a 15 deviation of only 1.1%. Based
on these results, zircon GZ7 was proposed by Szymanowski
et al (2018) as reference material for ono|yses of Ti in zircon
for the purpose of Ti-in-zircon geothermometry (Watson et al
2006, Ferry and Watson 2007).

Structural state

The mass densities (Table 1) were determined at
4658 + 0005 g cm™ (GZ7) and 4.537 + 0005 g cm™
(GZ8), respectively. Both values coincide well with published
mass densities for Sri Lankan zircon (Figure 5a), which scatter
between 4.68 and 472 g cm™ for well-crystallised and
below 4 g cm™ for metamict zrcon (cf Holland and
Gottfried 1955, Vaz and Senflle 1971, Murakami et al.
1991, Ellsworth et al. 1994, Nasdala et al. 2002, 2008,
2016).

Results of single-crystal X-ray diffraction analyses are
quoted in Table 1. The unit cell of GZ7 (264.12 A3+
022 AS) shows moderate volume expansion and the unit
cell of GZ8 (27013 A% + 020 A% shows significant
volume expansion, compared to mildly radiation-damaged
zircon from Sri Lanka (~ 261 A% Holland and Gottfried

Zircon GZ7

high

_ Zircon GZ8

EPMA counts

7 low

Figure 2. Two series of EPMA element maps of polished slabs of GZ7 and GZ8, done with uniform conditions and
settings for both samples (20 kV, 3 x 107 A, dwell time 100 ms, step width 20 pm). Colour-coded count-rate
ranges (in per s) are 260-460 for Hf, 30-102 for Th and 8-56 for U. The elongate black rectangles seen at the lower

left and lower right edge (GZ7) and the lower left and upper right edge (GZ8), respectively, are terminations of Cu

strips applied for improving electrical conductivity.
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Chemical compositions of zircon samples GZ7 and GZ8 (EPMA, Universitat Gottingen; LA-ICP-MS, Chinese
Academy of Sciences Beijing, Macquarie University Sydney and ETH Zirich)

Oxide/element Isotope measured | Zircon GZ7 | Zircon GZ8
EPMA mass fractions (%) © (n=84) (n=84)
SiO, - 32.85 + 0.08 3253 +£0.17
P>Os - 0.052 + 0.004 0.022 + 0.003
Y503 - 0.078 + 0.005 0.059 + 0.005
ZrO, - 66.40 £ 0.15 6648 £ 0.16
Yb,O3 - 0.017 + 0.005 0.012 + 0.003
HfO, - 1.25 + 001 1.39 + 0.02
ThO, - 0.069 + 0.005 0.027 + 0.003
UO, - 0.076 + 0.004 0.151 + 0.006
Total - 100.80 + 0.18 100.67 + 0.29
LAICP-MS results (ug g™") (n = 56) (n=128)

P 31 180 + 17 829 + 120
Ti 49 238 1.2 8.16 £ 1.06

Y 89 572 + 25 436 + 3
Nb 93 128 + 0.7 8.03 + 0.48
La 139 0.024 + 0.006 0.008 + 0.003
Ce 140 713 +£39 143 £+ 09
Pr 141 0.182 + 0.032 0.057 £ 0011
Nd 146 2.65 £ 037 1.14 £ 0.11
Sm 147 4.14 + 040 190 £0.18
Eu 151 0.513 = 0.067 0061 +=0.010
Gd 157 150 £ 0.9 8.96 + 0.48
Tb 159 471 £0.19 3.27 £ 0.09
Dy 163 533 +23 37.5+0.8
Ho 165 185+ 0.7 13.1 £ 03
Er 166 826 £ 28 544 +£10
Tm 169 180 £ 04 11.1 £ 0.2
Yb 173 179 £ 12 1042 + 4.2
Lu 175 298 £ 14 155 £ 09
Hf 178 10060 + 290 11600 + 240
Ta 181 3.82 £ 0.22 573 £ 038
Pb 204/206/207/208 265 + 14 480 + 32
Th 232 611 =33 240 + 6
U 238 680 + 31 1305 £ 57

Quoted uncertainties are 2s.

< Al,O3, CaO and FeO were not detected or average mass fractions were below 0.005%.

1955, Robinson et al 1971, see Figure 3b). The unit-cell
expansions are consistent with the decreases in mass density.
For both zircon samples, unit-cell parameters ap and ¢y
correlate with each other. This allows us to exclude any heat
treatment of the gemstones, because por’ricﬂ cmneo|ing at
comparably low temperatures would be associated with an
ao—co mismatch (Nasdala et al. 2004, Chanmuang et al.
2017) that is explained by preferential recovery of irradia-
tion-induced volume swelling perpendicular to the crystallo-

graphic ¢ axis (Weber 1990, 1993).

The FWHM of the v5(SiO,) Raman band (infernal By
mode: antisymmetric stretching of SiO4 tetrahedrons; Daw-
son et al 1971) was determined at 10.9 cm™ + 0.6 cm
(GZ7) and 21.1 em™ + 1.8 em™" (GZ8), indicating moder-
ate and significant radiation damage, respectively (Nasdala

© 2018 The Authors. Geostandards and Geoanalytical Research published by John Wiley & Sons Lid
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et al 1995, 2001). Multiple analyses across the large slices
and of additional small chips did not yield FWHM values
outside the above error ranges, indicating homogeneous
structural states of both samples.

Emission spectra (Figure 6a) do not show the ye||ow
broadband, defect-induced emission that typically domi-
nates the PL of mi|o||y rodioﬂon-domoged zircon (Gaft et al
2000, Nasdala et al 2003, 2011). This indicates the
presence of at least moderate defect densities, at which the
yellow broadband emission is quenched already (Nasdala
et al. 2011). The PL spectra show groups of narrow lines that
are assigned fo crystalfield-split electronic transitions of
REE®" (for the assignment see, e.g, Camall et al 1968, Gaft
et al 2000, 2015, lenz and Nasdala 2015). The REE-
related emission intensities of GZ7 exceed in general those
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Figure 3. Plot of chondrite-normalised mean REE mass
fractions (LA-ICP-MS) measured at Chinese Academy of
Sciences, Beijing, Macquarie University, Sydney, and
ETH Zurich. Heights of symbols exceed 2s uncertainties.
The grey area visualises REE mass fraction ranges of
igneous zircon that were graphically extracted from
figure 4 in Hoskin and Schaltegger (2003).
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Figure 4. Results of eleven Ti mass fraction determi-
nations (solution ICP-MS) for GZ7 performed at ETH

Zirich. Error bars represent 2s uncertainties.

of GZ8 by about one-third (Figure 6a), which corresponds to
the REE mass fraction ratios of the two samples (Table 2). The
fact that, in both samples, Dy** shows particularly high
intensity whereas Er** and Ho®" are virtually not defected,
even though the mass fractions of these elements are on a
similar order, is due to the different wavelength-dependent
excitation sensitivities of REE-related emissions (Gaft et al
2000, Friis et al. 2010, Lenz et al. 2015), which in turn are
controlled by the particular electronic structure of each REE
ion (Dieke and Crosswhite 1963, Reisfeld and Jergensen
1977). Following Lenz and Nasdala (2015), the FWHMs of
the ~ 17210 cm™" sublevel of the *Fo,» — *H; 5,2 emission

of Dy** and the ~ 11360 cm™" sublevel of the “F3/5 — “lg/o
emission of Nd®* (Figure 6b) were used to estimate the
degree of radiation damage. These PL FWHMs are
moderofe|y (GZ7) and significonﬂy broadened (GZ8) when
compared with FWHMs of crystalline zircon (Table 1); the
degrees of broadening correlate with the alpha doses (Lenz
and Nasdala 2015, Figure 5d).

After reconstituion of the crystalline state  through
annealing at 1400 °C, the unit-cell volumes had decreased
to < 261 A for both samples. Also, the annealed chips of
GZ7 and GZ8 yielded narrow Raman bands and narrow
Dy** and Nd®" emission lines whose FWHMs are identical
within errors to FWHMs of Raman bands and PL lines of
crystalline zircon (Table 1). As references for crystalline zircon,
we use the Ratanakiri, Cambodia, zircon [*°Pb/?*8U age
092 + 007 Ma (95% confidence uncertainty); calculated
alpha dose 00004 x 10'® g'!; Zeug et al 2018] and
synthetic undoped ZrSiO,4 (van Westrenen et al. 2004). Unit-
cell expansion and Raman band and PL line broadening of
GZ7 and GZ8 are predominantly assigned to the accumu-
lated radiation damage, whereas effects of minor amounts
of nonformula elements on unit-cell parameters and spec-

troscopic signals appear insignificant.
Optical absorption

Optical absorption spectra are presented in Figure 7. In
spite of their noticeably different colours, GZ7 and GZ8 yield
similar principal absorption characteristics. First, an intense
absorption edge that extends from the ultraviolet into the
visible range and down towards the NIR region causes
enhanced absorption especially of the blue fraction of the
visible light. Second, there is a multitude of narrow absorp-
tion features, with the most intense at ~ 15290 cm™'. These
are assigned to U*" (Richman et al 1967, Mackey et ol
1975) and cause absorption preferentially in the red range.
The two absorption features bracket a ‘window of enhanced
transmission’ in the green to yellow range that causes the
yellowish green colour of GZ8. In contrast, the U**
obsorpﬁon of GZ7 in the red range is much less intense,
which, along with a slightly different shape of the absorption
edge, results in brownish colour. Both samples also are yield
a fairly infense U* absorption band at ~ 6660 cm™ (for
assignment, see Vance and I\/\ockey 1974), whereas the
group of overlapping absorption features near ~ 8970 cm”
"is assigned fo a combination of U** and U". The two
latter, however, do not contribute to sample colouration as
these absorptions are in the NIR

The U*" and U absorption lines are significantly
broadened compared to reference spectra. The effect is
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Figure 5. Plots of mass density (a), unit cell volume (b) and full widths at half maximum of the main Raman band at

ca. 1000 cm™' (c) and the Nd®*-related emission line at ca. 11360 ¢cm™! (d) against the time-integrated alpha dose,

for various zircon samples from Sri Lanka. Blue star, reference zircon M257 (Nasdala et al. 2008). Grey star,

reference zircon M127 (Nasdala et al. 2016). Open circles, mass densities from Vaz and Senftle (1971), Murakami
et al. (1991), Ellsworth et al. (1994) and Zhang et al. (2000); unit-cell volumes and Raman FWHMs from Nasdala
et al. (2004) and unpublished data, PL FWHMs from Lenz and Nasdala (2015) and unpublished data. Grey arrows

visualize the general ‘Sri Lankan’ trends of parameter changes with increasing radiation damage.

again assigned to radiation damage in GZ7 and GZ8. The
intensity rafio of the absorption lines at ~ 15290 em™! (U*")
and ~ 6660 ecm™ (U*") is notably lower for GZ7, when
compared to GZ8. Although interprefations are somewhat
limited, as unpolarised spectra are compared, this may
indicate that GZ7 has higher U>*/U*", which in tum seems
to agree well with more oxidising conditions in the formation
of GZ7 as concluded from the REE patterns.

Further characterisation: O isotopes, Hf isotopes
and (U-Th)/He dating

Results of oxygen isotope analyses are presented in
Table 3. These data yield mean §'80  values
6.88%0 + 005% VSMOW  (2) for GZ7 and
8.88%0 + 0.10%0 VSMOW (2s) for GZ8. The significant
difference of the two means strongly indicates that GZ7 and

of
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GZ8 must be derived from different host rocks. This is
consistent with the different Th/U ratios and the difference in
Ti mass fractions (Table 1). However, the 3'80 values
obtained for GZ7 and GZ8 do not provide independent
evidence on the type of formation environment. Even though
they fall well within the range of typical oxygen isotope
compositions of igneous zircon (Valley et al 2005), §'80
values of 6.88%0 and 8.88%0 VSMOW are not conclusive
for igneous growth. Note that, for some homogeneous Sri
Lankan reference zircon, exceptionally high §'80 values are
reported [13.9%0 VSMOW for M257 (Nasdala et ol 2008);
15.4%0 VSMOW for CZ3 (Cavosie et al 2011)], which
rather suggest a metamorphic origin of zircon, perhaps by
the metasomatic formation of skams or similar Ca-rich, acidic
rocks from marble-like precursors (Cavosie et al. 201 1). This,
however, does not pertain fo the 880 values of 6.88%0 and
8.88%0 VSMOW obtained here; there is no evidence for a
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Figure 6. Laser-induced PL spectroscopy. (a) Emission spectra (473 nm excitation) of GZ7 and GZ8 in comparison
with reference spectra of REE-doped ZrSiO4. GZ7 and GZ8 show widely similar REE-emission patterns; the higher
emission intensities of GZ7 are due to slightly higher REE mass fractions. (b) Enlargements of the *F3,5 — *l3,,
emission of Nd** in the near infrared range (532 nm excitation) and the *Fo,2 — *H;3,2 emission of Dy®* in the
green range (473 nm excitation). Spectra of untreated samples (solid) are compared with spectra obtained after
structural reconstitution through annealing at 1400 °C (dotted; intensity x 0.5). Lines whose FWHMs are quoted in

Table 1 are marked with asterisks.

skarn origin of GZ7 or GZ8, and conclusions regarding the
formation environments must remain speculative. We also
note that the possibility of zoning in §'80 or [OH] has not
been determined in these crystc1|s, either resuhing from
growth or alteration of more highly radiation-damaged
domains. The higher degree of radiation damage defer-
mined for GZ8 suggests that it is more likely to confain

442

domains altered in 8'80. Such domains would not neces-
sarily imply mobility of Pb or other non-formula elements.
Further information may come from in situ SIMS analysis of

§'%0 and [OH] by SIMS.

Results of Hf isotope analyses are listed in Table 4. Initial
1764{/177Hf ratios and ey(f) values were calculated from the
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synthetic ZrSiO, doped with U** (see Chase and Osmer
1966) and US*-bearing natural zircon (Ratanakiri
sample after oxidising heating; see Zeug et al. 2018).
Spectral ranges that are invisible to the human eye are

indicated by the grey background shade.

measured Lu-Hf isotopic ratios, based on a decay constant
of 1.865 x 107" a! for '"°Lu (Scherer et al 2001) and
the CHUR (chondritic uniform reservoir) ratios of '76Hf/ 77 Hf
of 0282772 and '"®Lu/'"’Hf of 00332 (Blichert-Toft and
Albarede 1997). Low 1764£/1777Hf ratios and hence low
el values of -27.7 (GZ7) and -27.4 (GZ8) indicate that
both of the two zircons samples presumably have formed
from reworked ancient (probably Archaean) protolith mate-
rial (compare Kinny et al. 1991, Santosh et al 201 4). There
is, however, no independen‘r evidence for the formation
environment. On the one hand, low eHf(#) values may imply
metamorphic formation as reworked product of ancient crust
(as discussed by Kinny et al. 1991). On the other hand, in
rare cases igneous zircon may also yield similarly low Hf
values (e.g, Yang et al. 2007, Wotzlaw et al. 2015).

Results of (U-Th)/He analyses are summarised in
Table 5. The mean He ages (2s uncertainties) of
438 Ma + 3 Ma (GZ7) and 426 Ma + 9 Ma (GZ8) fall
well within the range of He ages of unheated Sri Lankan
zircon (Hurley 1954, Nasdala et al 2004). The He ages
hence indicate that both zrcon specimens have not
experienced any unusual thermal history, which in tum

supports that the gemstones have never been subjected to
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any colour enhancement through thermal treatment. The fact
that He ages postdate typical U-Pb ages of Sri Lankan gem
zircon by ~ 100 Ma is explained by a prolonged cooling
history of the Sri Lankan Highland Complex: After closure of
the zrcon U-Pb system in the Cambrian, rocks of the
Highland Complex underwent slow cooling at elevated T
that was followed by exhumation and cooling to temper-
atures lower than rough|y 200 °C in the Ordovician (H3lzl
et al 1991).

U-Pb geochronology results (ID-TIMS)

U-Pb isotopic ratios and ages are listed in Tables 6 and 7.
They are reported with internal errors only, including counting
statistics, uncertainties in correcting for mass discrimination and
the uncertainty in the common (blank) Pb composition.
Wetherill Concordia plots are presented in Figure 8. Here,
erors for calculated weighted mean ages quoted are of the
form x/y/z where x is solely analytical uncertainty, y is the
combined analytical and tracer uncertainty, and z is the
combined analytical, tracer and U decay constant uncertainty.
The uncertainties in tracer calibration (003%; Condon et al
2015, Mclean et al 2015) and U o|ecoy constants (0.108%;
Joffey et al 1971, see also Schoene et al 2006, Mattinson
2010, Boehnke and Harrison 2014) were added to the

‘infernal emor’ in quadrature.

A fotal of thirty-one ID-TIMS analyses without prior CA
treatment were done for each of the two zircon samples
GZ7 and GZ8. The recommended mean 2%°Pb/?*8U
values are 0085735 + 0000009 (2s) for GZ7 and
0.088037 + 0000010 (2s) for GZ8. The weighted mean
206p, /238 ages (uncertainties quoted at the 95% confi-
dence level) are 53026 Ma + 005 Ma (MSWD 3.1) for
GZ7 and 54392 Ma + 006 Ma (MSWD 6.0) for GZ8.
Both of these ages are concordant within the uncertainties of
decay constants. It should be noted that at NIGL, three
additional ID-TIMS analyses of each zircon sample were
done that were preceded by CA treatment according to
Mattinson (2005). The results are included in Tables 6 and
7; however, they were disregarded in the calculation of
mean isofopic ratios and ages. Systematic deviations of the
results (isotopic ratios and degrees of U-Pb discordance)
from those of analyses without CA were not observed.

The ~ 14 Ma difference between the two U-Pb dates is
not unusual for gem zircon from the Sri Lankan Highland
Complex. Published ages scatter in the approximate range
575-520 Ma (Pidgeon et al 1994, Claoué-long et al
1995, Kennedy 2000, Stern 2001, Nasdala et al 2004,
2008, 2016). However, the age difference supports again
that GZ7 and GZ8 were derived from different source rocks.

© 2018 The Authors. Geostandards and Geoanalytical Research published by John Wiley & Sons Ltd 443
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Table 3.
Results of oxygen isotope analyses by laser fluorination (University of Wisconsin at Madison)
Analysis number | Sample/reference | Material analysed Mass (mg) 3'%0
name
Raw (%0 VSMOW) ©
Measurement session on 11 February 2016
1 UWG-2 Gamet reference 4.40 554
2 UWG-2 Garnet reference 228 5.82
3 UWG-2 Gamet reference 232 5.60
4 UWG-2 Garnet reference 1.64 5.59
5 UWG-2 Gamet reference 1.67 572
6 UWG-2 Garnet reference 1.92 571
7 UWG-2 Gamet reference 2.30 572
8 GZ8 Zircon 3.05 871 8.82
9 GZ8 Zircon 216 8.82 8.93
10 GZ8 Zircon 177 8.81 8.92
11 Gz7 Zircon 2.86 6.73 6.84
12 Gz7 Zircon 2.30 676 6.87
13 GZ7 Zircon 2.53 6.78 6.89
14 UWG-2 Garnet reference 271 5.65
15 UWG-2 Gamet reference 3.14 574
Measurement session on 20 April 2016
1 UWG-2 Gamet reference 327 5.58
2 UWG-2 Garnet reference 2.58 5.50
3 UWG-2 Gamet reference 217 570
4 UWG-2 Garnet reference 2.88 5.61
5 UWG-2 Gamet reference 2.44 575
6 UWG-2 Garnet reference 2.08 5.61
7 Gz7 Zircon 2.24 6.67 6.81
8 GZ8 Zircon 277 879 8.93
9 GZ8 Zircon 2.88 8.88 9.02
10 UWG-2 Garnet reference 2.45 5.60
11 UWG-2 Gamet reference 2.39 570
Measurement session on 3 March 2017
1 UWG-2 Gamet reference 3.19 5.45
2 UWG-2 Garnet reference 2.86 5.47
3 UWG-2 Gamet reference 2.30 5.42
4 UWG-2 Garnet reference 1.72 5.39
5 UWG-2 Gamet reference 1.50 5.45
6 UWG-2 Garnet reference 174 5.44
7 UWG-2 Gamet reference 1.54 5.46
8 GZ7 Zircon 2.56 6.65 6.97
9 Gz7 Zircon 2.55 6.56 6.88
10 GZ8 Zircon 227 8.38 8.70
11 GZ8 Zircon 195 8.53 8.85
12 UWG-2 Garnet reference 219 5.60
13 UWG-2 Gamet reference 229 5.49
Summary Zircon GZ7 (six individual analyses): Mean 3'80 = 6.88%o + 0.05%0 VSMOW (2s)

Zircon GZ8 (seven individual analyses): Mean 8'20 = 8.88%o = 0.10%0 VSMOW (2s)

@ GZ7 and GZ8 data are corrected to the respective UWG-2 reference analyses.

SIMS U-Pb analysis

Results of SIMS analyses are presented in Figure 9 and
given in Appendix S4 (which contains data, additional
Concordia diagrams and plots of Th/U for GZ7 and GZ8).
Zircon GZ8 exhibits somewhat variable Th/U, with a single

chip having Th/U = 0.1872 + 00004 (n = 13), which is
significantly higher than all other chips, which have Th/U =
0.1816 + 00002 (n = 46). There is no correlation between
Th/U and the U-Pb isotopic ratios obtained. Based on the
EPMA line scans, we may speculate that this chip originated
from a rim area of the initial stone (see Appendix S3).

444 © 2018 The Authors. Geostandards and Geoanalytical Research published by John Wiley & Sons Ltd
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Table 4.
Results of Hf isotope determinations by ID-ICP-MS (Chinese Academy of Sciences Beijing)
Sample name | Lu(ng g™") Hf (ng g") | "76Lu/"77Hi 1761t/ 7 HE V7OHE/V 77 HE(H) © entlf) ®
GZ7 #1 324 9323 0.00049 0281666 + 0.000004 0.281661 277
GZ7 #2 328 9351 0.00050 0281666 + 0.000007 0281661 277
GZ8 #1 170 10259 0.00024 0281662 + 0.000005 0.281660 274
GZ8 #2 17.0 10226 000024 0281661 + 0.000005 0281659 -27.4

Quoted uncertainties of measured '7°Hf/!77Hf ratios are 2s.
@ Age-corrected (i.e, initial) '7HI/'77Hf ratios (GZ7, 530 Ma; GZ8, 544 Ma).
B en) = [(7°H "7 HiDsample/ 7 H/ 7" Hicur) - 11 x 104 (Faure and Mensing 2004, CHUR '7°Hf/'7”Hf ratio from Blichert-Toft and Albaréde 1997).

Table 5.
(U-Th)/He ages of GZ7 and GZ8 (University of Arizona at Tucson)
Sample name “He (pmol) | U (pg) Th (pg) | Th/u Age (Ma)
Zircon GZ7
16A598 1.316 + 0.034 445 + 6 394 + 6 0.908 437 +13
16A599 0.366 = 0016 122 +2 106 + 2 0.894 442 + 20
16A600 1.172 + 0.050 399 + 6 349 + 5 0.897 435 + 20
16A602 0.799 + 0015 271 £ 4 238 £ 3 0.901 437 £ 10
Mean age of four analyses: 438 Ma + 3 Ma (2s)
Zircon GZ8
16A603 0.563 + 0011 232+ 3 42.1 + 0.6 0.186 415+ 10
16A604 1.670 + 0.032 676 £ 10 1198 £ 1.7 0.182 423 £10
16A605 0.758 + 0015 295 + 4 521 +0.8 0.181 440 £ 11
16A606 0.655 + 0013 261 + 4 475+ 07 0.187 429 + 10
16A607 1.235 + 0012 502 +7 887 + 1.3 0.181 421 +7

Mean age of five analyses: 426 Ma = 9 Ma (2s)

Quoted uncertainties on individual ages are 1s measurement precision.

The calculated mean Concordia ages (Ludwig 1998)
given in Figure 9 coincide within errors with the ID-TIMS
results, even though they seem to be slightly (ca. 2 Ma)
younger. It may be speculated that the apparently systematic
bias is caused by the particular data reduction calibration
parameters. For instance, applying ““®Pb correction to the
same SIMS data for zircon GZ8 results in a mean Concordia
age of 546.4 Ma + 1.3 Ma (1), which is 2.5 Ma older
than the ID-TIMS result. However, the apparent age
differences are below the reproducibility of SIMS results
(typically ~ 19%). It nevertheless seems worthwhile that more
SIMS laboratories check whether there is a systematic bias
between SIMS and ID-TIMS results, prior to using GZ7 and
GZ8 as reference materials.

Two important observations can be made from the SIMS
results. First, both zircon samples did not reveal any
detectable heterogeneity of the U-Pb isotopic ratios within
and between the sessions. Second, even Though zircon GZ8
is significantly more radiation-damaged than M257 and

any other SIMS reference, there were no noticeable matrix

© 2018 The Authors. Geostandards and Geoanalytical Research published by John Wiley & Sons Lid

on behalf of International Association of Geoanalysts

effects under the O, beam. Too high levels of radiation
damage can effectuate systematically enhanced emission of
Pb* relative to U and U oxide species, which would result in
reversely discordant U-Pb isotopic ratios (White and Ireland
2012). This has not been observed, suggesting that the
sputter behaviour under the O beam of both GZ7 and
GZ8 does not cause systematically different ion yields to that
of unknowns, which in turn is most promising in terms of the

performance as reference materials.

Concluding remarks

Zircon samples GZ7 and GZ8 constitute suitable
reference materials for the U-Pb analysis of unknown zircon
samples by means of SIMS. Both reference materials are
isotopically homogeneous and have a concordant U-Pb
system, low levels of non-radiogenic Pb and comparably
high U and Pb mass fraction. The latter are expected fo result
in high count rates and good Poisson sfatistics during
analysis. Both reference materials did not show noticeable
matrix effects (that is, preferred sputtering of Pb isotopes

445
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Figure 8. Wetherill Concordia diagrams showing results of U-Pb isotope analyses (ID-TIMS) performed in five

laboratories. Ellipses represent 2s. Three uncertainties for mean ages are quoted: analytical uncertainty

(2s) / combined analytical and tracer uncertainty / combined analytical, tracer and 222U decay constant uncertainty.

resulting in reverse discordance) under the O, beam.
Features pointing to a postgrowth chemical alteration history
have not been found, and our measurement results allow us
to exclude any unusual thermal history. This also applies to
the common practice of Sri Lankan gem miners and dealers
to enhance colour and clarity of zircon specimens by heating
them in an open fire, which can be excluded in the case of
GZ7 and GZ8.

More than 3500 mg are still available for each of the
samples GZ7 and GZ8. They will be distributed and

Analysis session 1 (March 22—-24, 2016

)
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made available for SIMS U-Pb analysis. A major fraction of
be used and distributed for SIMS
analytical work in other laboratories, by the Beijing
SHRIMP Centre, Institute of Geo|ogy, Chinese Academy
of Geological Sciences (contact: liudunyi@bijshrimp.cn).

the material  will

However, it needs to be emphasised that samples will
not be provided for LAICP-MS U-Pb geochronology. This
explicit decision is made to reduce the consumption of the
two reference materials to a minimum. We wish to ensure
that the materials will be available for SIMS work for a
long period.

Analysis session 2 (April 22—24, 2016)
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Figure 9. Wetherill Concordia diagrams showing results of U-Pb analyses (SIMS) performed at Curtin University,

Perth. Error ellipses represent 1s uncertainties. Results were calibrated versus M257 with an assumed 2°6Pb/238U

age of 561.3 Ma (Nasdala et al. 2008). Concordia ages are quoted at the 95% confidence level and include

uncertainties of decay constants.
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The following supporting information may be found in
the online version of this article:

Appendix S1. Details for ID-TIMS analytical procedures
in the laboratories.

Appendix S2. Measurement results from EPMA (n = 84
for each of the two zircon samples) at Universitat Géttingen,
Germany.

Appendix S3. Documentation of locations of EPMA
(Universitét Gottingen, Germany) linescans, and plots and
histograms of mass fractions of HIO,, ThO, and UO..

Appendix S4. Measurement results from SHRIMP anal-
yses (Curtin University, Perth, Australia) including additional
Concordia plots and Th/U histograms.

This material is available as part of the online article from:
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stract (This link will take you fo the article abstract).
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