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Despite their importance, our understanding of noncovalent RNA–protein
interactions is incomplete. This especially concerns the binding between RNA

and unstructured protein regions, a widespread class of such interactions.

Here, we review the recent experimental and computational work on RNA–
protein interactions in an unstructured context with a particular focus on how

such interactions may be shaped by the intrinsic interaction affinities between

individual nucleobases and protein side chains. Specifically, we articulate the

claim that the universal genetic code reflects the binding specificity between

nucleobases and protein side chains and that, in turn, the code may be seen

as the Rosetta stone for understanding RNA–protein interactions in general.
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RNA–protein interactions

Our understanding of biology at the molecular level is

transforming rapidly and central to this is a radical

reappraisal of the importance and ubiquity of RNA–
protein interactions [1–6]. From gene expression regu-

lation to RNA processing and decay to protein local-

ization, it is now clear that many cellular processes are

unimaginable without direct, specific interactions

between RNA and RNA-binding proteins (RBPs)

[1–7]. A good example in this regard is the case of

mRNAs and their interaction networks. Namely,

recent proteome-wide experiments utilizing UV-cross-

linking and mass spectrometry have led to hundreds of

newly identified proteins, which interact directly with

mRNAs, but do not contain any known RNA-binding

domains (RBDs) [2,5,6,8–12]. For example, 40% of

the 570 identified yeast mRNA-binding proteins lack

well-defined RBDs, are not associated with any pre-

sently known functions in RNA biology and even

include different metabolic enzymes and transcription

factors [10]. Importantly, many such ‘enigmRBPs’ con-

tain repetitive, low-complexity sequence regions and are

intrinsically unstructured i.e., disordered [2,5,6,8–12].1

A systematic Gene Ontology (GO) analysis of the

dependence between the calculated degree of structural

disorder and functional enrichment clearly shows that

‘poly(A) RNA binding’ is the most enriched function

among highly disordered proteins (>80%) in human

(Fig. 1A) [13]. In general, RNA/DNA binding func-

tions feature strongly among the highly disordered

proteins (Fig. 1A). The reverse is also true: ~30% of

all mRNA-binding RBPs in HeLa cells, for example,

have one half or more of their residues in an unstruc-

tured state [5,10] (Fig. 1B). Traditionally, structural

disorder in proteins has not only been linked with
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ADE, adenine; CYT, cytosine; FMRP, Fragile X Mental Retardation Protein; FUS, Fused-In-Sarcoma; GO, Gene Ontology; GUA, guanine;
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1Throughout this text, we use the terms “unstructured” and

“disordered” interchangeably when referring to a lack of well-

defined, persistent secondary or tertiary structure in macromolecules.
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transcription, chromatin modification, and signaling

[14,15] but is also key for the assembly of phase-sepa-

rated organelles such as P-bodies and stress granules,

major sites of RNA processing and storage [16–20].
Although conserved flexibility and disorder are

important for RNA–protein binding, the fundamental

principles behind such interactions remain largely

unexplored. As a consequence, the computational tools

to predict binding between RNA and unstructured

proteins are scarce [21]. The present review focuses on

the recent work on RNA–protein interactions in an

unstructured context with a particular focus on how

the specificity in such interactions may be determined.

Cellular context of RNA interactions
with unstructured RBPs

Unstructured RBPs are closely involved at all stages of

the life cycle of different RNAs in the cell. In the case

of mRNAs and long noncoding RNAs (lncRNAs),

this includes transcription, processing by the spliceso-

some and the exon junction complex, nuclear export,

translation at the ribosome, and decay (reviewed in [5]

and [22]). Importantly, a series of recent studies have

reported instances of phase separation in the cyto-

plasm and nucleoplasm, a process similar to lipid

domain (e.g., so-called ‘rafts’) formation in the mem-

brane, which in aqueous environment results in the

formation of liquid droplets (reviewed in [20], [23], and

[24]). These droplets are typically rich in proteins and

RNA and define nonmembrane-bound cellular com-

partments such as nucleoli, P-bodies, stress granules,

and Cajal bodies. They are also known to be the sites

of mRNA storage, processing, and decay. What is criti-

cal here is that it has been shown that both multiva-

lency (i.e., existence of many low-affinity binding sites)

and the presence of low-complexity, disordered regions

in proteins may be required for the formation of such

phase-separated compartments [19,23,25,26]. Moreover,

such compartments are known to preferentially attract

single-stranded nucleic acids and are stabilized in their

presence [25,27]. For these reasons, it is likely that

understanding of RNA interactions with disordered

proteins and their contextual dependence may con-

tribute directly to our understanding of the structure,

assembly, and function of phase-separated cellular

compartments as well. Conversely, this also suggests

that it is critical to study such interactions in the con-

text of crowded, dehydrated, low-dielectric environ-

ments similar to those present in P-bodies or stress

granules, where RNA molecules may also be in a sin-

gle-stranded, unstructured form.

Lack of 3D organization motivates
sequence-based analysis

Due to diminished structural constraints, the proper-

ties of intrinsically unstructured/disordered proteins

(IDPs) depend much more on their linear sequence

features than in the case of folded proteins [14,15,28].

Fig. 1. RNA binding and protein disorder. (A) Distribution of the degree of structural disorder among human proteins according to IUPRED

[42], with the most enriched GO functional term for each bin indicated in color; (B) Structural disorder among poly(A) RNA-binding proteins

in human according to IUPRED [42]. Figure 1A was reproduced with permission (Oxford University Press) from Ref. [13].
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For example, accurate prediction of protein disorder

using sequence information is almost routine nowa-

days [28,29]. In general, the structural, dynamical, and

functional characteristics of IDPs can in many cases

be successfully related to the linear distribution of dif-

ferent physicochemical properties of individual resi-

dues and/or short fragments along their sequence, that

is, 1D physicochemical profiles. As an illustration, we

present in Fig. 2 several such 1D profiles obtained for

Fused-In-Sarcoma (FUS) protein [26,30–32] including
its disorder probability, charge density, hydrophobic-

ity, and GUA-affinity profiles. FUS is an abundant

nuclear protein involved in mRNA transcription, pro-

cessing, and transport [30,31,33–37] and implicated in

the pathophysiology of amyotrophic lateral sclerosis

and frontotemporal lobar degeneration [37,38]. Impor-

tantly, FUS contains four highly disordered RNA-

binding regions (RBR) including RGG/RG domains

[5], whose arginine residues are known to be the tar-

gets of arginine methyl transferases [39]. This post-

translational modification has been shown to modu-

late the nuclear transport of FUS [40] as well as

RNA-binding activity of another RNA-binding IDP

FMRP [41].

A distribution of disorder probability along the

FUS sequence, that is, its disorder profile as calculated

in this case by IUPRED [42], gives one a possibility to

identify unstructured regions within the protein and

match them with the known RBRs. For instance,

repetitive linear sequence elements required for RNA

binding, like RS and RGG/RG domains, reside in

highly unstructured regions and/or the flanking regions

of structured RNA-binding domains (e.g., RRM) as

was also shown for a number of RNA-binding IDPs

(see J€arvelin et al. [5] for detailed review of disorder

organization in 46 different well-characterized RNA-

binding IDPs). The FUS RRM in particular is sur-

rounded by two RGG/RG domains (RBR 2 and 3,

Fig. 2). Such an organization enables a synergy

between disordered and structured RNA-binding

domains and can increase the RNA affinity of the

RRM in question as compared to an isolated one. For

example, it has been shown recently that in FUS the

flanking RGG/RG domains actually enable the RNA-

binding activity of its RRM [32]. While RRMs typi-

cally exhibit highly conserved sequence features, the

flanking regions can also display sequence conserva-

tion and more importantly—disorder conservation

[29]. Using DisCons, a server for the analysis of disor-

der score conservation in multiple sequence alignment

[43], Varadi and coworkers have shown that disorder

conservation is especially pronounced for the residues

at RNA-binding interfaces.

A 1D distribution of charged residues along protein

sequence gives one the possibility to identify promi-

nent negatively or positively charged regions. Interest-

ingly, the FUS RRM together with the flanking RBRs

displays a prominent alternation in the net charge

(Fig. 2). Many IDPs are polyampholytes and exhibit

simultaneously positively and negatively charged

regions, whereby their distribution within the sequence

shapes protein conformational behavior [44] and can

also modulate phosphorylation patterns within the dis-

ordered regions [45]. The alternating sequence of net

charge has also been shown to be an important deter-

minant in phase-separated droplet formation involving

DDX4 RNA-helicase [25]. A distribution of hydropho-

bic residues along an IDP sequence is another impor-

tant property which affects liquid phase separation,

due largely to the contribution of aromatic residues to

multivalent interactions with RNA and other proteins

(e.g., p–p and cation–p), as shown for a number of

RNA-binding IDPs including FUS [19,23,25,26,46–48].
Interestingly, while the FUS RRM is prominently

hydrophobic, its RBRs display a different level of

hydrophobicity depending on the neighboring sequence

context (Fig. 2; the FUS hydrophobicity profile was

determined by using a consensus hydrophobicity scale

Factor I [49]). This could contribute to a slightly dif-

ferent sequence specificity of FUS RBRs and the pref-

erence of its RRM to interact with the relatively more

hydrophobic ADE-rich sequences [32]. Finally, in

order to map directly the RNA-binding specificity

along the FUS sequence, we plot its 1D guanine

(GUA) affinity profile as derived by using a knowl-

edge-based nucleobase/amino acid side-chain affinity

scale (see below) and the formalism described else-

where [50]. Here, one can see that the disordered RBR

regions perfectly match the peaks of GUA-affinity,

which is in line with an experimental observation of

the general preference of these regions for GUA-rich

sequences [5,32] (N.B. following the standard thermo-

dynamic convention, the low DG values correspond to

high affinity and vice versa). This also agrees with the

analysis of the distribution of GUA-preferring amino

acids in structured proteins, which shows that they are

mostly enriched in unstructured loop regions [51].

Sequence-based prediction of
RNA–protein interactions

Computational prediction of RNA–protein interactions

in an unstructured context is still relatively underdevel-

oped due in part to our lack of understanding of the

basic physicochemical principles at play and a general

lack of high-resolution information when it comes to
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unstructured partners. This situation, however, will likely

change in the near future and the lessons learned and the

methods developed when it comes to RNA–protein inter-

actions in general will likely be important in the case of

structural disorder as well. Most modern methods for

predicting RNA–protein binding from sequence informa-

tion, physicochemical properties of individual RNA and

protein building blocks, or global RNA–protein charac-

teristics are based on machine learning strategies. In

particular, predictive models are trained on the known

interactors by using features such as composition,

hydrophobicity, and evolutionary information [52–55].
An early such approach, developed by Pancaldi and Bah-

ler, is based on support vector machine (SVM) and ran-

dom forest (RF) formalisms and uses the known RNA

and protein features as predictors, including inter aliaGO

terms, protein localization, and chromosome position

information [56]. A comparable approach developed by

Fig. 2. 1D physicochemical profiles of

FUS. Disorder, charge, hydrophobicity and

GUA-affinity profiles of human FUS in

relation to its domain structure. The

charge, hydrophobicity and GUA-affinity

profiles were determined by using a

running-average window of 21-residues.
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Dobbs and coworkers, also using SVM and RF

approaches, showed that using just sequence information

as descriptors may result in a significantly better predic-

tion [57]. Chen and coworkers employed an alternative

approach and used an extended na€ıve Bayes approach on

sequence composition data [58]. In contrast, Tartaglia

and coworkers put a major focus on the physicochemical

properties and trained their catRAPID model on features

such as secondary structure propensity, hydrogen bond-

ing, and van der Waals interactions [59,60]. Neural

networks have also been applied to identifying

RNA–protein interactions, following their overwhelming

success in areas such as image or speech recognition and

natural language processing. DeepBind, for example, uses

a neural network trained on several experimental datasets

including RNAcompete, ChIP-seq, and HT-SELEX

experiments and performs well over a wide range of

metrics [61]. Qu and coworkers have shown the benefits

of a deeper network in the rather similar case of DNA

binding: for an extensive realistic dataset, an accuracy of

94.2% could be achieved [62]. RCK, on the other hand,

uses k-mers to evaluate the binding propensity and

slightly outperforms DeepBind, at least on the RNAcom-

pete dataset [63,64]. Finally, RNAcontext, although

somewhat outdated, still performs well in comparison to

RCK and DeepBind, sometimes even outperforming

the two. In this approach, both RNA sequence and

secondary structure information are used to accurately

predict binding to RBPs [65].

Although they tackle an important and difficult

problem, the above methods still frequently suffer

from a limited accuracy, a lack of general applicability,

and the fact that only a few of them [21,50,53,59] are

fundamentally steeped in basic physicochemical princi-

ples. The latter criticism is probably the most impor-

tant downside of the machine learning approaches:

they frequently do not allow for a deeper insight into

the physicochemical underpinnings of RNA–protein
interactions. Another limitation concerns the availabil-

ity of experimental data to train these models on. For

instance, the only existing method for predicting RNA

binding to IDPs, DisoRDPbind [21], was trained on a

set of only 14 annotated RNA-binding proteins. Here,

we would like to argue that it may in many cases be

more advantageous to approach this problem purely

from a physicochemical perspective and exploit the

intrinsic affinities between nucleobases and amino

acids as a foundation for predicting the interaction

between longer biopolymers. This approach seems

promising especially in the context of single-stranded

RNA interacting with unstructured proteins, given that

in those cases the dependence on the properties of

basic building blocks is likely most pronounced.

Nucleobase/amino acid affinities as a
basis for understanding RNA–IDP
interactions

The recent findings about the mode of interaction

between RNA and IDPs highlight the relevance of pre-

dicting and understanding such interactions from the

perspective of first principles. For instance, it is known

that short linear motifs with <10 residues are one of

the primary ways of how IDPs interact with partners

[22,28]. Moreover, even for IDPs that fold upon bind-

ing, the participating regions comprise mostly local,

10–70 residue segments [22,28]. On the other hand,

RNA-binding sites for proteins also typically include

just a few nucleotides organized in single-stranded, lin-

ear stretches [63,66]. For example, RNAcompete stud-

ies have shown that most RBPs bind single-stranded

RNAs with <10 nucleotides, and none absolutely

requires a defined RNA secondary structure [63].

Hence, one may expect that the principles of RNA

interactions with IDPs or the unfolded states of other-

wise folded proteins can be deduced by examining

structural and thermodynamic aspects of interactions

between individual nucleobases and amino acids. With

diminished structural constraints, the behavior of long

polymers can more easily be related to their con-

stituent building blocks, a possibility that has

remained unexplored until recently.

Significant progress in understanding nucleobase–
amino acid interactions has over the years been made

using computational approaches [50,67–80]. For exam-

ple, analysis of 3D structures of RNA– or DNA–pro-
tein complexes has yielded the relative binding

preferences of nucleobases and amino acids together

with a geometric and energetic characterization of

their interactions [50,67,68,72,75–79]. Despite a limited

amount of statistics that could be extracted from the

analysis of 3D complexes [50], the obtained amino acid

preferences for GUA and adenine (ADE) are signifi-

cantly robust and reproducible when it comes to the

scale values and a moderate anticorrelation between

the GUA and ADE scales as shown for different sets

of RNA–protein complexes (Fig. 3A). Also, ab initio

methods have been used to study the quantum-

mechanical aspects of such binding, including hydro-

gen bonding [71], p–p [73,74] and cation–p interactions

[70]. Finally, the binding free energy maps for several

amino acids and DNA base pairs have also been

reported [69]. While these early studies have typically

either focused on a few bases and amino acids only or

have simply been insufficiently quantitative, recently

there appeared several computational studies with a

more comprehensive outlook. For example, our recent
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analysis of the absolute binding free energies between

all standard RNA–DNA nucleobases and amino acid

side-chain analogs in different solvents [81,82] and

their dependence on the local dielectric properties is,

to the best of our knowledge, the first example where

this key property has been determined within a single,

self-consistent framework. Interestingly, the dielectric

properties of the environment tune the affinity of

amino acid side chains for GUA and cytosine (CYT),

while having little or no effect on ADE and uracil

(URA) scales, as shown by using umbrella-sampling

simulations of individual nucleobases and amino acid

side-chain analogs in water and methanol (Fig. 3B)

[81,82]. These results are especially important when it

Fig. 3. Robustness of affinities between nucleobases and amino acid side chains. (A) A close correlation between the knowledge-based

(KNB) scales of GUA/side-chain affinity derived from two largely independent sets of structures of RNA–protein complexes (NAR2013 [50]

and NDB2017). The NDB2017 set was generated using a representative dataset from the Nucleic Acid Database (http://ndbserver.rutgers.ed

u) [110] with the resolution cutoff of 2.5 A using the identical method as described by Polyansky et al. [50]. The overlap between the two

sets is given by the Venn diagram. Inset: anticorrelation between the GUA and ADE side-chain affinity scales is observed for two sets of

knowledge-based scales (NAR2013 [50] and NDB2017) and the MD-based scales of nucleobase–amino acid affinity in methanol [81]. The

bars indicate the Pearson R coefficients between the GUA and ADE scales. (B) ADE and URA amino acid-binding free energy scales are up

to a constant largely insensitive to local dielectric constant, while those for GUA and CYT strongly depend on it (Pearson Rs given in the

inset) [81]. (C) Andrews et al. [80] nucleobase–amino acid-binding DG scales (x-axis) correlate closely with de Ruiter et al. scales [81] (y-axis)

Figure 3C was reproduced with permission (American Chemical Society) from Ref. [80].
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comes to understanding the basic principles of RNA–
IDP interactions in the context of liquid RNA–protein
granules characterized by a reduced dielectric constant

as compared to bulk water. Importantly, the obtained

affinities in water were found to be in an excellent

agreement with the results of a subsequent independent

analysis by Elcock and coworkers who have performed

explicit-solvent MD simulations of long single- and

double-stranded DNA molecules in heterogeneous

aqueous mixtures of amino acids using a different MD

force field [80] (Fig. 3C). The latter analysis also pro-

vided a comprehensive dissection of the salt depen-

dence of nucleobase–amino acid interactions and the

contribution of DNA sugar and phosphate groups to

binding. Moreover, the nucleobase–amino acid affinity

scales were also derived based on a simulated partition-

ing of amino acids between nucleobase-rich phases and

water [83,84]. Finally, Vondrasek and coworkers have

used the known PDB structures of DNA–protein com-

plexes together with molecular mechanics and DFT-D

ab initio calculations to estimate the binding prefer-

ences between all 20 natural amino acids and the four

DNA bases [79].

When it comes to experimental determination of

nucleobase–amino acid-binding preferences, only lim-

ited progress has been made over the years. Akinrimisi

et al. [85] and Thomas et al. [86] have studied spectro-

scopically the solubility in water of several amino acids

in the presence of either purines or different nucleo-

sides, respectively. In the same way, Thomas et al. [86]

have determined binding constants for several nucle-

oside and amino acid pairs. On the other hand, Woese

et al. have evaluated chromatographically the interac-

tion propensities of amino acids and different pyridine

derivatives in water [87,88]. Finally, several groups have

studied interactions between different nucleotides and

polyamino acids, focusing typically on polylysine or

polyarginine peptides [89–91]. The scarcity of the exper-

imental studies in this context can in part be attributed

to the low solubility of bases and some side chains as

well as the weak interaction strengths involved. For

example, our recent work suggests that only a handful

of nucleobase side-chain affinities exceed 1 kBT [81,82].

As discussed below, however, we see a systematic exper-

imental determination of such affinities as one of the

major open challenges for the future.

Nucleobase–amino acid affinities
reflect the genetic code organization

As discussed above, RNA–protein interactions in an

unstructured context are a ubiquitous feature of mod-

ern biological systems. However, they also provide an

important perspective for understanding the establish-

ment of the RNA–protein relationship in primordial

systems in which structural disorder is likely to have

been even more pervasive [92]. This, in particular, con-

cerns the central aspect of the whole RNA–protein
relationship: the process of translation and the genetic

code [93,94]. Namely, with minor variations, the

genetic code is universally conserved and it, without

exaggeration, represents the very point where biologi-

cal phenotype and genotype meet. However, despite 50

years of effort, the nature of the driving forces behind

its establishment has remained largely unknown. Over

the years, multiple theories have been proposed in this

regard with varying levels of evidence [94–97]. Of rele-

vance here, the ‘stereochemical hypothesis’ suggests

that the key feature of ancient translation was a direct

interaction between codons and amino acids they code

for [87,88,94,98]. Although specific binding of isolated

codons and their cognate amino acids has never been

observed, analysis of amino acid-binding RNA apta-

mers [98] and RNA–protein interactions in the ribo-

some [99] has revealed that not only some codons but

also anticodons, preferentially colocalize with their

cognate amino acids. Importantly, early support for

the hypothesis came from Woese and coworkers who

analyzed the interaction preferences between amino

acids and pyrimidine mimetics pyridines [87,88,94,100]

(see also above). They showed that amino acids with a

similar propensity to interact with pyridines also have

similar codons.

A common feature of most studies of the code’s origin

has been their focus on individual codons and amino

acids only [93,94,101] with little attention paid to the

properties of longer biopolymers. However, any biases

present at the level of individual groups may get cooper-

atively amplified in such cases, facilitating their detec-

tion. Moreover, if the stereochemical hypothesis is

indeed true, then the genetic code could also be seen as a

key for understanding RNA–protein interactions in gen-

eral. Following this paradigm, we have recently

explored the link between the physicochemical proper-

ties of mRNAs and the proteins they encode [102,103]

and have made a surprising discovery. First, using both

experimental and computational nucleobase–amino acid

affinity scales, we could show that the nucleobase con-

tent of a given codon is directly related to the affinities

of its cognate amino acids for the respective nucleobases

(Fig. 4A). For example, the codon PYR content corre-

lates with the PYR-mimetic affinity of the cognate

amino acids with a Pearson R of �0.61, while the codon

PUR content correlates with the knowledge-based

GUA-affinities of the cognate amino acids with a Pear-

son R of �0.68 (Fig. 4A). What is more, this
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Fig. 4. The complementarity hypothesis. (A) Codon PYR content correlates with the cognate amino acid affinity for PYR mimetics [100],

while codon PUR content correlates with the cognate amino acid affinity for GUA [50]. (B) Right: profile calculation method together with a

typical pair of mRNA PYR density and protein PYR-mimetic affinity profiles in human; left: Pearson Rs for mRNA PYR density/protein PYR-

mimetic affinity profiles in 15 species. (C) Left: Location of top matches for human mRNAs and cognate proteins, including UTRs and

transition regions (violet/olive) for mRNA PUR density/protein ADE affinity, and mRNA PYR density/protein PYR affinity cases. Numbers of

top matches are given above bars. Right: An example of a top match between mRNA PUR density and cognate protein ADE affinity.

Figures 4A and 4B were reproduced with permission (Oxford University Press) from Ref. [102].
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relationship was even further magnified in the context of

complete biopolymers. A pyrimidine (PYR) density pro-

file of an mRNA coding sequence can be obtained as a

running average of the PYR content of its codons

(Fig. 4B). Similarly, a PYR-affinity profile of the cog-

nate protein can be estimated by weighting its sequence

by the amino acid propensities to interact with PYR

mimetics as captured in Woese’s experiments or subse-

quent simulations [88,100]. The remarkable finding is

that for most mRNA–protein pairs the two profiles

match closely when aligned [102,103]. For example, the

median Pearson correlation coefficient R between the

two profiles over all human pairs is R = �0.74 (note

that all affinity scales are defined such that negative Rs

mean matching [102,103]).

This is unexpected and potentially far-reaching:

although mRNAs and their cognate proteins are com-

pletely different biopolymers, they exhibit a strong,

quantitative complementarity in that the density of a

particular type of groups in one of them can be accu-

rately predicted from the affinity profile for similar

groups in the other one. Importantly, we could show

that this finding is statistically extremely robust and

holds equally well for organisms from all three

domains of life (Fig. 4B) [102,103]. Moreover, we have

confirmed these findings for biologically relevant PYRs

as well as extended them to purines (PURs) by using

knowledge-based nucleobase–amino acid affinities

derived from structures of RNA–protein complexes

[50,103]. For example, mRNA PUR density profiles

quantitatively match GUA-affinity profiles of cognate

proteins, with a median of R = �0.80 in human

[50,103]. Notably, protein ADE affinity profiles exhibit

a reverse property in that they match the PYR density

of cognate mRNAs. We have shown that this stems

from biosynthetically more complex amino acids that

are thought to have entered biology later [50,103].

Finally, we have fully corroborated the above findings

by using affinities derived by orthogonal approaches

including umbrella-sampling MD simulations [81,82]

or modeling of partitioning experiments [83,84].

The above results provide support for the stereochem-

ical hypothesis of the origin of the genetic code, but they

emphasize the importance of an extended, polymeric

context in which the relatively weak affinities of individ-

ual building blocks can be amplified. Moreover, these

findings support a novel hypothesis that in the unstruc-

tured state, mRNAs and the proteins they encode may

be complementary to each other and bind in a coaligned

manner, whereby the complementarity level is nega-

tively regulated by mRNA ADE content [50,51,81–
84,103–105]. Since compositional matching is seen for

primary sequence profiles, we expect that the strongest

interactions will occur if the partners are unstructured,

yielding dynamic, multivalent, liquid-like complexes: in

addition to IDPs, the hypothesis applies equally well to

the unfolded states of otherwise folded proteins [51].

Importantly, the coarse-grained nature of the comple-

mentarity hypothesis allows one to extend it to interac-

tions between unstructured proteins and nucleic acids

other than their cognate mRNA coding regions

[102,103]. The key point is that a physicochemical view

of biomolecular sequences provides a measure of both

binding propensity in an unstructured context and evo-

lutionary relatedness for different RNA and protein

molecules. In this sense, the above findings could be

interpreted as general rules for understanding RNA–
protein interactions: amino acids whose codons are

enriched in PYR also display proteome-wide tendencies

to be specific for PYR or ADE, while polar amino acids,

encoded by PUR, predominantly interact with GUA

(Fig. 4A). Moreover, these rules could be applied in

noncoding situations as well. This can be illustrated in

the case of noncoding 50 and 30 untranslated regions

(UTRs) of mRNAs. For example, for hundreds of

human mRNA sequences, the top match between the

mRNA nucleobase density profiles and their cognate

proteins’ nucleobase-affinity profiles is observed in the

UTRs or in the transitional regions including a UTR

and a part of the coding sequence (Fig. 4C). In fact, for

mRNA ADE density profiles, the majority of mRNAs

and their cognate proteins fall into these categories. This

is well illustrated in the case of HoxB4 mRNA and its

cognate protein, where the top matching region includes

a significant part of the 50 UTR (Fig. 4C). As a whole,

the above findings suggest that the structure of the uni-

versal genetic code reflects, in part, the binding speci-

ficity between nucleobases and amino acids and,

conversely, support an exciting possibility that the uni-

versal genetic code may be seen as a key for understand-

ing RNA–protein interactions in the unstructured

context and beyond (Fig. 5).

Significance and outlook

An improvement in our understanding of the RNA–
protein interactions in the unstructured context,

including the ability to predict binding sites and relative

affinities, would represent a major step forward from

both fundamental and practical perspectives. Currently,

most of our knowledge of RNA–protein interactions

concerns structured RNA-binding motifs and,

consequently, computational methods for predicting

RNA-protein interactions in a physicochemically and

structurally realistic manner are necessarily limited and

biased by such knowledge [21,53–55,59,106]. Similarly
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problematic, the sequence-based computational

approaches for predicting RNA–protein interactions

typically involve machine learning strategies and only

indirectly rely on or help further understand the micro-

scopic physicochemical principles behind such interac-

tions [53–55]. While experimental approaches toward

enumerating and characterizing RNA interactions with

IDPs are making significant advances [2,5,8–10,29,63],
they are limited by the fact that the microscopic, high-

resolution features of such complexes are largely beyond

the reach of modern structural biology methods. It is,

therefore, imperative to explore the existence of general,

novel physicochemical principles behind such interac-

tions. Our ‘complementarity hypothesis’ may provide

one such principle. In general, physicochemical comple-

mentarity is one of the most powerful paradigms used

to explain biological function at the molecular level.

Complementarity between DNA strands is the key ele-

ment behind gene duplication, antibody–antigen com-

plementarity guides immune response, while enzymes

cannot be understood without the complementarity

between active sites and reaction transition states.

Therefore, it is potentially extremely far-reaching that

RNA and protein sequences, including both cognate

mRNA–protein pairs, as shown in our recent work

[50,51,81,83,84,103–105] and those not connected by

coding, as illustrated above, would exhibit such a robust

compositional complementarity. This finding simply

demands detailed exploration and full explanation and

we see it as a major challenge for the future. Having said

this, the range of validity and general applicability of

the ‘complementarity hypothesis’ remain unclear: for

example, the fact that the contour length of a typical

mRNA coding region is approximately five times longer

than the contour length of its cognate protein suggests

that any physical realization of putative complementary

binding must negotiate a significant spatial challenge.

However, the hypothesis provides a well-defined, testa-

ble framework for relating the fundamental physico-

chemical properties of nucleobases and amino acids

with the interactions of complete RNAs and proteins in

an unstructured context. Moreover, the hypothesis pro-

motes a way of looking at RNA–protein interactions

that could be of practical importance regardless of

whether the hypothesis itself turns out to be true or not.

In particular, viewing RNA and protein sequences as

physicochemical entities, with specific properties and

local interaction propensities, presents a powerful para-

digm for linking the speed and power of standard bioin-

formatic techniques with the atomistically realistic

rigor. The consequences of this line of research poten-

tially concern all canonical areas of bioinformatics and

computational biology ranging from sequence compar-

ison to multiple sequence alignment to building of phy-

logenetic trees.

There are a number of important open challenges

regarding the RNA–protein interactions in an unstruc-

tured context. Here, we outline what we believe are

the three most relevant and fundamental such chal-

lenges that have thus far, somewhat surprisingly,

escaped wider attention. We firmly believe that these

issues hold a key to a deeper understanding of RNA–
protein interactions in an unstructured context, but

could also prove to be essential on a much wider scale.

Fig. 5. The universal genetic code as the Rosetta stone for understanding RNA–protein interactions.
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CHALLENGE 1: experimental determination of

nucleotide–amino acid affinities

Nucleotides and amino acids are arguably the most

fundamental building blocks in all living matter.

Moreover, the specificity in interactions between

nucleic acids and proteins is directly shaped by the

specificity in interactions between these individual

building blocks. Considering this, it is remarkable that

the pioneering, yet incomplete experimental studies

aimed at determining the affinities between individual

nucleotides and amino acids, that is, their fragments

[85–91], have not been extended since the 1960s and

1970s when they were first performed. There currently

exists no self-consistent, experimentally determined

table of absolute or, for that matter, relative binding

DGs between the 5 standard RNA–DNA nucleotides

(i.e., nucleosides/nucleobases) and the 20 standard

amino acids (i.e., amino acid side chains). As discussed

above, there is a growing body of computational/theo-

retical work in this regard [50,77–80], but the experi-

mental contributions remain surprisingly incomplete.

A part of the reason for this are the low solubilities of

some of the groups and/or the low affinities involved,

but we are firmly convinced that these difficulties can

be successfully addressed with the aid of clever experi-

mental strategies using, for example, affinity chro-

matography, NMR, microscale thermophoresis, or

high-precision ITC. A natural extension of such stud-

ies would be a careful dissection of the binding contri-

butions of different fragments of individual nucleotides

and amino acids, such as the sugar or the phosphate

groups, as well as an analysis of the impact of post-

transcriptional nucleotide modifications and post-

translational amino acids modifications on the individ-

ual binding affinities. For example, by using a purely

computational analysis, we have recently shown that

deamination of adenine, one of the most biologically

important post-transcriptional nucleobase modifica-

tions, changes its interaction pattern with amino acids

to that of guanine [107]. It would be critical that such

and similar studies be extended from an experimental

side as well. One criticism may be that nucleotide–
amino acid interactions will be severely context depen-

dent and susceptible to local environmental influences

(pH, ionic strength, dielectric constant, temperature

etc.) and, therefore, too difficult to accurately pin

down. While we share this apprehension, we are con-

vinced that a systematic analysis of such influences is

in order. Moreover, our computational results strongly

suggest that certain robust patterns of behavior remain

even under changing environmental conditions [81,82].

Such robustness, after all, must be there simply for the

biological systems to be able to function in a stable

way.

CHALLENGE 2: analysis of sequence specificity in

the formation of phase-separated granules

Phase-separated granules represent arguably the best,

biologically relevant system for studying the interac-

tions between RNA and proteins in an unstructured

context [16–20]. On the one hand, single-stranded

RNA and disordered proteins are ubiquitous con-

stituents of such granules. On the other hand, the

weak, multivalent, dynamic complexes formed by dis-

ordered RNA and proteins naturally lead to liquid–liq-
uid phase separation that can also be well studied

in vitro. In other words, phase separation and RNA–
protein interactions in an unstructured context go

hand in hand and should therefore be studied from a

joint perspective: understanding of RNA–protein inter-

actions in the unstructured state will provide critical

information for the understanding of granule forma-

tion and vice versa. Importantly, a growing body of

work has shown that the presence of RNA, and in

particular single-stranded RNA, markedly reduces the

critical concentration required for the formation of

phase-separated protein granules [20,25,27]. However,

a major open question concerns the sequence speci-

ficity behind such effects. In most cases, the authors

have used random RNA sequences and/or select

homooligonucleotides, but there have been no fully

systematic attempts at understanding how different

RNA, that is, protein sequences influence each other

in this regard. We predict that the impact of different

RNAs on the formation of protein granules will follow

the rules given by the universal genetic code

[50,102,103]. For example, we predict that GUA-rich

sequences will have a stronger effect on the phase sep-

aration of protein sequences containing mostly polar

residues, while ADE/PYR-rich sequences will have a

stronger impact on the more hydrophobic protein

sequences. In the context of the complementarity

hypothesis discussed above, it would also be particu-

larly interesting to systematically study the impact of

cognate mRNA–protein pairs when it comes to gran-

ule formation. These studies should go hand in hand

with the determination of the individual binding affini-

ties between nucleotides and amino acids and their

environmental dependence as outlined in the first chal-

lenge above. For example, phase-separated granules

are known to be partially dehydrated, low-dielectric

environments in which the relative nucleotide–amino

acid affinities may follow different rules than in the

more aqueous environments. Our umbrella-sampling
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calculations have shown that in methanol, a solvent

with a significantly lower dielectric constant as com-

pared to water, the affinity of GUA for the negatively

charged Asp and Glu side chains increases multiple-fold

as compared to that in water [81,82]. Such and similar

analyses will be necessary for the full understanding of

microscopic driving forces behind the formation of

phase-separated granules. Conversely, phase-separated

granules will provide the proper biological context for

studying the intricacies of the binding preferences

between individual nucleotides and amino acids and

RNA–IDP interactions in general.

CHALLENGE 3: development of computational

tools for the prediction/analysis of RNA–protein
binding in an unstructured context

The third open challenge concerns the development of

computational frameworks for predicting the sites and

the strength of interaction between RNA and unstruc-

tured protein regions that would be based on funda-

mental physicochemical principles. While the top-down

machine learning-based approaches definitely have sig-

nificant merit, the more physicochemically motivated,

bottom-up strategies could provide a deeper mechanis-

tic insight and have a greater predictive power. When it

comes to the interaction between single-stranded RNAs

and largely unstructured proteins, successful strategies

could be based on the knowledge of the intrinsic inter-

action affinities between the individual building blocks

of the two polymers, as discussed above. Presently, we

do not have a clear prescription for how this could be

implemented practically, but are motivated by a simple

analogy. Namely, hybridization of two strands of

DNA or folding of an RNA molecule can be well pre-

dicted from a simple thermodynamic quantification of

Chargaff pairing rules and local stacking propensities

[108,109]. Local affinities of nucleotides for each other,

together with some understanding of the effect of local

neighboring sequences and structures are often suffi-

cient to predict, for example, the melting temperatures

of duplexes or the folds of individual RNA molecules

[108,109]. The point here is that the global structural

and thermodynamic behavior of large nucleic acid

molecules can be related to their linear sequence fea-

tures and local interaction preferences. It is our hope

that the rich world of RNA–protein interactions in an

unstructured context could also in part be understood

in such simple terms, which in turn would open up a

myriad of different fundamental and applied possibili-

ties. We are particularly excited by the possibility that

the rules behind such interactions may actually be

embedded in an ancient, already familiar codebook:

the universal genetic code.
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