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Despite their importance, our understanding of noncovalent RNA-protein
interactions is incomplete. This especially concerns the binding between RNA
and unstructured protein regions, a widespread class of such interactions.
Here, we review the recent experimental and computational work on RNA-
protein interactions in an unstructured context with a particular focus on how
such interactions may be shaped by the intrinsic interaction affinities between
individual nucleobases and protein side chains. Specifically, we articulate the
claim that the universal genetic code reflects the binding specificity between
nucleobases and protein side chains and that, in turn, the code may be seen
as the Rosetta stone for understanding RNA—protein interactions in general.

Keywords: intrinsically disordered proteins; long noncoding RNAs;
nucleobase/amino acid interaction affinity scales; RNA—protein granules;
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Our understanding of biology at the molecular level is
transforming rapidly and central to this is a radical
reappraisal of the importance and ubiquity of RNA—
protein interactions [1-6]. From gene expression regu-
lation to RNA processing and decay to protein local-
ization, it is now clear that many cellular processes are
unimaginable without direct, specific interactions
between RNA and RNA-binding proteins (RBPs)
[1-7]. A good example in this regard is the case of
mRNAs and their interaction networks. Namely,
recent proteome-wide experiments utilizing UV-cross-
linking and mass spectrometry have led to hundreds of
newly identified proteins, which interact directly with
mRNAs, but do not contain any known RNA-binding
domains (RBDs) [2,5,6,8-12]. For example, 40% of
the 570 identified yeast mRNA-binding proteins lack
well-defined RBDs, are not associated with any pre-
sently known functions in RNA biology and even
include different metabolic enzymes and transcription
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factors [10]. Importantly, many such ‘enigmRBPs’ con-
tain repetitive, low-complexity sequence regions and are
intrinsically unstructured i.e., disordered [2,5,6,8-12].!
A systematic Gene Ontology (GO) analysis of the
dependence between the calculated degree of structural
disorder and functional enrichment clearly shows that
‘poly(A) RNA binding’ is the most enriched function
among highly disordered proteins (>80%) in human
(Fig. 1A) [13]. In general, RNA/DNA binding func-
tions feature strongly among the highly disordered
proteins (Fig. 1A). The reverse is also true: ~30% of
all mRNA-binding RBPs in HeLa cells, for example,
have one half or more of their residues in an unstruc-
tured state [5,10] (Fig. 1B). Traditionally, structural
disorder in proteins has not only been linked with

lThroughout this text, we use the terms “unstructured” and
“disordered” interchangeably when referring to a lack of well-
defined, persistent secondary or tertiary structure in macromolecules.

ADE, adenine; CYT, cytosine; FMRP, Fragile X Mental Retardation Protein; FUS, Fused-In-Sarcoma; GO, Gene Ontology; GUA, guanine;
IDPs, unstructured/disordered proteins; IncRNAs, long noncoding RNAs; MD, molecular dynamics; PUR, purine; PYR, pyrimidine; RBDs,
RNA-binding domains; RBPs, RNA-binding proteins; RBR, RNA-binding regions; RF, random forest; RRM, RNA recognition motif; SVM, sup-

port vector machine; URA, uracil; UTRs, untranslated regions.
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RNA-protein interactions in unstructured context

transcription, chromatin modification, and signaling
[14,15] but is also key for the assembly of phase-sepa-
rated organelles such as P-bodies and stress granules,
major sites of RNA processing and storage [16-20].
Although conserved flexibility and disorder are
important for RNA—protein binding, the fundamental
principles behind such interactions remain largely
unexplored. As a consequence, the computational tools
to predict binding between RNA and unstructured
proteins are scarce [21]. The present review focuses on
the recent work on RNA-protein interactions in an
unstructured context with a particular focus on how
the specificity in such interactions may be determined.

Cellular context of RNA interactions
with unstructured RBPs

Unstructured RBPs are closely involved at all stages of
the life cycle of different RNAs in the cell. In the case
of mRNAs and long noncoding RNAs (IncRNAs),
this includes transcription, processing by the spliceso-
some and the exon junction complex, nuclear export,
translation at the ribosome, and decay (reviewed in [5]
and [22]). Importantly, a series of recent studies have
reported instances of phase separation in the cyto-
plasm and nucleoplasm, a process similar to lipid
domain (e.g., so-called ‘rafts’) formation in the mem-
brane, which in aqueous environment results in the
formation of liquid droplets (reviewed in [20], [23], and
[24]). These droplets are typically rich in proteins and
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RNA and define nonmembrane-bound cellular com-
partments such as nucleoli, P-bodies, stress granules,
and Cajal bodies. They are also known to be the sites
of mRNA storage, processing, and decay. What is criti-
cal here is that it has been shown that both multiva-
lency (i.e., existence of many low-affinity binding sites)
and the presence of low-complexity, disordered regions
in proteins may be required for the formation of such
phase-separated compartments [19,23,25,26]. Moreover,
such compartments are known to preferentially attract
single-stranded nucleic acids and are stabilized in their
presence [25,27]. For these reasons, it is likely that
understanding of RNA interactions with disordered
proteins and their contextual dependence may con-
tribute directly to our understanding of the structure,
assembly, and function of phase-separated cellular
compartments as well. Conversely, this also suggests
that it is critical to study such interactions in the con-
text of crowded, dehydrated, low-dielectric environ-
ments similar to those present in P-bodies or stress
granules, where RNA molecules may also be in a sin-
gle-stranded, unstructured form.

Lack of 3D organization motivates
sequence-based analysis

Due to diminished structural constraints, the proper-
ties of intrinsically unstructured/disordered proteins
(IDPs) depend much more on their linear sequence
features than in the case of folded proteins [14,15,28].
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Fig. 1. RNA binding and protein disorder. (A) Distribution of the degree of structural disorder among human proteins according to IUPRED
[42], with the most enriched GO functional term for each bin indicated in color; (B) Structural disorder among poly(A) RNA-binding proteins
in human according to IUPRED [42]. Figure 1A was reproduced with permission (Oxford University Press) from Ref. [13].
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For example, accurate prediction of protein disorder
using sequence information is almost routine nowa-
days [28,29]. In general, the structural, dynamical, and
functional characteristics of IDPs can in many cases
be successfully related to the linear distribution of dif-
ferent physicochemical properties of individual resi-
dues and/or short fragments along their sequence, that
is, 1D physicochemical profiles. As an illustration, we
present in Fig. 2 several such 1D profiles obtained for
Fused-In-Sarcoma (FUS) protein [26,30-32] including
its disorder probability, charge density, hydrophobic-
ity, and GUA-affinity profiles. FUS is an abundant
nuclear protein involved in mRNA transcription, pro-
cessing, and transport [30,31,33-37] and implicated in
the pathophysiology of amyotrophic lateral sclerosis
and frontotemporal lobar degeneration [37,38]. Impor-
tantly, FUS contains four highly disordered RNA-
binding regions (RBR) including RGG/RG domains
[5], whose arginine residues are known to be the tar-
gets of arginine methyl transferases [39]. This post-
translational modification has been shown to modu-
late the nuclear transport of FUS [40] as well as
RNA-binding activity of another RNA-binding IDP
FMRP [41].

A distribution of disorder probability along the
FUS sequence, that is, its disorder profile as calculated
in this case by IUPRED [42], gives one a possibility to
identify unstructured regions within the protein and
match them with the known RBRs. For instance,
repetitive linear sequence elements required for RNA
binding, like RS and RGG/RG domains, reside in
highly unstructured regions and/or the flanking regions
of structured RNA-binding domains (e.g., RRM) as
was also shown for a number of RNA-binding IDPs
(see Jarvelin et al. [5] for detailed review of disorder
organization in 46 different well-characterized RNA-
binding IDPs). The FUS RRM in particular is sur-
rounded by two RGG/RG domains (RBR 2 and 3,
Fig. 2). Such an organization enables a synergy
between disordered and structured RNA-binding
domains and can increase the RNA affinity of the
RRM in question as compared to an isolated one. For
example, it has been shown recently that in FUS the
flanking RGG/RG domains actually enable the RNA-
binding activity of its RRM [32]. While RRMs typi-
cally exhibit highly conserved sequence features, the
flanking regions can also display sequence conserva-
tion and more importantly—disorder conservation
[29]. Using DisCons, a server for the analysis of disor-
der score conservation in multiple sequence alignment
[43], Varadi and coworkers have shown that disorder
conservation is especially pronounced for the residues
at RNA-binding interfaces.

RNA-protein interactions in unstructured context

A 1D distribution of charged residues along protein
sequence gives one the possibility to identify promi-
nent negatively or positively charged regions. Interest-
ingly, the FUS RRM together with the flanking RBRs
displays a prominent alternation in the net charge
(Fig. 2). Many IDPs are polyampholytes and exhibit
simultaneously positively and negatively charged
regions, whereby their distribution within the sequence
shapes protein conformational behavior [44] and can
also modulate phosphorylation patterns within the dis-
ordered regions [45]. The alternating sequence of net
charge has also been shown to be an important deter-
minant in phase-separated droplet formation involving
DDX4 RNA-helicase [25]. A distribution of hydropho-
bic residues along an IDP sequence is another impor-
tant property which affects liquid phase separation,
due largely to the contribution of aromatic residues to
multivalent interactions with RNA and other proteins
(e.g., m—m and cation-r), as shown for a number of
RNA-binding IDPs including FUS [19,23,25,26,46-48].
Interestingly, while the FUS RRM is prominently
hydrophobic, its RBRs display a different level of
hydrophobicity depending on the neighboring sequence
context (Fig. 2; the FUS hydrophobicity profile was
determined by using a consensus hydrophobicity scale
Factor I [49]). This could contribute to a slightly dif-
ferent sequence specificity of FUS RBRs and the pref-
erence of its RRM to interact with the relatively more
hydrophobic ADE-rich sequences [32]. Finally, in
order to map directly the RNA-binding specificity
along the FUS sequence, we plot its 1D guanine
(GUA) affinity profile as derived by using a knowl-
edge-based nucleobase/amino acid side-chain affinity
scale (see below) and the formalism described else-
where [50]. Here, one can see that the disordered RBR
regions perfectly match the peaks of GUA-affinity,
which is in line with an experimental observation of
the general preference of these regions for GUA-rich
sequences [5,32] (N.B. following the standard thermo-
dynamic convention, the low AG values correspond to
high affinity and vice versa). This also agrees with the
analysis of the distribution of GUA-preferring amino
acids in structured proteins, which shows that they are
mostly enriched in unstructured loop regions [51].

Sequence-based prediction of
RNA-protein interactions

Computational prediction of RNA—protein interactions
in an unstructured context is still relatively underdevel-
oped due in part to our lack of understanding of the
basic physicochemical principles at play and a general
lack of high-resolution information when it comes to

FEBS Letters 592 (2018) 2901-2916 © 2018 The Authors. FEBS Letters published by John Wiley & Sons Ltd 2903

on behalf of Federation of European Biochemical Societies.



RNA-protein interactions in unstructured context

HUMAN FUS (P35637)

0 100 200 300

1 tmnh
of e e ‘
N

I
213RGERGRGGZ??
241 PRGRGGGRGGRGG” " *

yRBRZ mRBRS RBR 4

B. Zagrovic et al.

500

; ) PTM

3T RGGGNGRGGRGRGGPMGRGGYGGGGSGGGGRGG Y /

47’RRGGRGGYDRGGYRGRGGDRGGFRGGRGGGDRGG" ">

Disordered

Disorder

0.4
Structured

Positive

0.2
0.1

0.0

Charge

-0.1

Negative

Hydrophilic

o
)

=
'S

Hydrophaobicity
o o
o N

1
o
(S

Hydrophobic

o
o

o
=)

GUA affinity

]
bt
o

1
Prefering GUA .

0 100 200

300
Amino-acid position

unstructured partners. This situation, however, will likely
change in the near future and the lessons learned and the
methods developed when it comes to RNA—protein inter-
actions in general will likely be important in the case of
structural disorder as well. Most modern methods for
predicting RNA-protein binding from sequence informa-
tion, physicochemical properties of individual RNA and
protein building blocks, or global RNA—protein charac-
teristics are based on machine learning strategies. In
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Fig. 2. 1D physicochemical profiles of
FUS. Disorder, charge, hydrophobicity and
GUA-affinity profiles of human FUS in
relation to its domain structure. The
charge, hydrophobicity and GUA-affinity
profiles were determined by using a
running-average window of 21-residues.

particular, predictive models are trained on the known
interactors by using features such as composition,
hydrophobicity, and evolutionary information [52-55].
An early such approach, developed by Pancaldi and Bah-
ler, is based on support vector machine (SVM) and ran-
dom forest (RF) formalisms and uses the known RNA
and protein features as predictors, including inter alia GO
terms, protein localization, and chromosome position
information [56]. A comparable approach developed by
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Dobbs and coworkers, also using SVM and RF
approaches, showed that using just sequence information
as descriptors may result in a significantly better predic-
tion [57]. Chen and coworkers employed an alternative
approach and used an extended naive Bayes approach on
sequence composition data [58]. In contrast, Tartaglia
and coworkers put a major focus on the physicochemical
properties and trained their catRAPID model on features
such as secondary structure propensity, hydrogen bond-
ing, and van der Waals interactions [59,60]. Neural
networks have also been applied to identifying
RNA-protein interactions, following their overwhelming
success in areas such as image or speech recognition and
natural language processing. DeepBind, for example, uses
a neural network trained on several experimental datasets
including  RNAcompete, ChIP-seq, and HT-SELEX
experiments and performs well over a wide range of
metrics [61]. Qu and coworkers have shown the benefits
of a deeper network in the rather similar case of DNA
binding: for an extensive realistic dataset, an accuracy of
94.2% could be achieved [62]. RCK, on the other hand,
uses k-mers to evaluate the binding propensity and
slightly outperforms DeepBind, at least on the RNAcom-
pete dataset [63,64]. Finally, RNAcontext, although
somewhat outdated, still performs well in comparison to
RCK and DeepBind, sometimes even outperforming
the two. In this approach, both RNA sequence and
secondary structure information are used to accurately
predict binding to RBPs [65].

Although they tackle an important and difficult
problem, the above methods still frequently suffer
from a limited accuracy, a lack of general applicability,
and the fact that only a few of them [21,50,53,59] are
fundamentally steeped in basic physicochemical princi-
ples. The latter criticism is probably the most impor-
tant downside of the machine learning approaches:
they frequently do not allow for a deeper insight into
the physicochemical underpinnings of RNA-protein
interactions. Another limitation concerns the availabil-
ity of experimental data to train these models on. For
instance, the only existing method for predicting RNA
binding to IDPs, DisoRDPbind [21], was trained on a
set of only 14 annotated RNA-binding proteins. Here,
we would like to argue that it may in many cases be
more advantageous to approach this problem purely
from a physicochemical perspective and exploit the
intrinsic affinities between nucleobases and amino
acids as a foundation for predicting the interaction
between longer biopolymers. This approach seems
promising especially in the context of single-stranded
RNA interacting with unstructured proteins, given that
in those cases the dependence on the properties of
basic building blocks is likely most pronounced.
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Nucleobase/amino acid affinities as a
basis for understanding RNA-IDP
interactions

The recent findings about the mode of interaction
between RNA and IDPs highlight the relevance of pre-
dicting and understanding such interactions from the
perspective of first principles. For instance, it is known
that short linear motifs with <10 residues are one of
the primary ways of how IDPs interact with partners
[22,28]. Moreover, even for IDPs that fold upon bind-
ing, the participating regions comprise mostly local,
10-70 residue segments [22,28]. On the other hand,
RNA-binding sites for proteins also typically include
just a few nucleotides organized in single-stranded, lin-
ear stretches [63,660]. For example, RNAcompete stud-
ies have shown that most RBPs bind single-stranded
RNAs with <10 nucleotides, and none absolutely
requires a defined RNA secondary structure [63].
Hence, one may expect that the principles of RNA
interactions with IDPs or the unfolded states of other-
wise folded proteins can be deduced by examining
structural and thermodynamic aspects of interactions
between individual nucleobases and amino acids. With
diminished structural constraints, the behavior of long
polymers can more easily be related to their con-
stituent building blocks, a possibility that has
remained unexplored until recently.

Significant progress in understanding nucleobase—
amino acid interactions has over the years been made
using computational approaches [50,67-80]. For exam-
ple, analysis of 3D structures of RNA— or DNA-pro-
tein complexes has yielded the relative binding
preferences of nucleobases and amino acids together
with a geometric and energetic characterization of
their interactions [50,67,68,72,75-79]. Despite a limited
amount of statistics that could be extracted from the
analysis of 3D complexes [50], the obtained amino acid
preferences for GUA and adenine (ADE) are signifi-
cantly robust and reproducible when it comes to the
scale values and a moderate anticorrelation between
the GUA and ADE scales as shown for different sets
of RNA-protein complexes (Fig. 3A). Also, ab initio
methods have been used to study the quantum-
mechanical aspects of such binding, including hydro-
gen bonding [71], m—=r [73,74] and cation—= interactions
[70]. Finally, the binding free energy maps for several
amino acids and DNA base pairs have also been
reported [69]. While these early studies have typically
either focused on a few bases and amino acids only or
have simply been insufficiently quantitative, recently
there appeared several computational studies with a
more comprehensive outlook. For example, our recent
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to a constant largely insensitive to local dielectric constant, while those for GUA and CYT strongly depend on it (Pearson Rs given in the

inset) [81]. (C) Andrews et al. [80] nucleobase-amino acid-binding AG

scales (x-axis) correlate closely with de Ruiter et al. scales [81] (y-axis)

Figure 3C was reproduced with permission (American Chemical Society) from Ref. [80].

analysis of the absolute binding free energies between
all standard RNA-DNA nucleobases and amino acid
side-chain analogs in different solvents [81,82] and
their dependence on the local dielectric properties is,
to the best of our knowledge, the first example where
this key property has been determined within a single,
self-consistent framework. Interestingly, the dielectric
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properties of the environment tune the affinity of
amino acid side chains for GUA and cytosine (CYT),
while having little or no effect on ADE and uracil
(URA) scales, as shown by using umbrella-sampling
simulations of individual nucleobases and amino acid
side-chain analogs in water and methanol (Fig. 3B)
[81,82]. These results are especially important when it
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comes to understanding the basic principles of RNA-
IDP interactions in the context of liquid RNA—protein
granules characterized by a reduced dielectric constant
as compared to bulk water. Importantly, the obtained
affinities in water were found to be in an excellent
agreement with the results of a subsequent independent
analysis by Elcock and coworkers who have performed
explicit-solvent MD simulations of long single- and
double-stranded DNA molecules in heterogeneous
aqueous mixtures of amino acids using a different MD
force field [80] (Fig. 3C). The latter analysis also pro-
vided a comprehensive dissection of the salt depen-
dence of nucleobase—amino acid interactions and the
contribution of DNA sugar and phosphate groups to
binding. Moreover, the nucleobase—amino acid affinity
scales were also derived based on a simulated partition-
ing of amino acids between nucleobase-rich phases and
water [83,84]. Finally, Vondrasek and coworkers have
used the known PDB structures of DNA-protein com-
plexes together with molecular mechanics and DFT-D
ab initio calculations to estimate the binding prefer-
ences between all 20 natural amino acids and the four
DNA bases [79].

When it comes to experimental determination of
nucleobase—amino acid-binding preferences, only lim-
ited progress has been made over the years. Akinrimisi
et al. [85] and Thomas et al. [86] have studied spectro-
scopically the solubility in water of several amino acids
in the presence of either purines or different nucleo-
sides, respectively. In the same way, Thomas et al. [86]
have determined binding constants for several nucle-
oside and amino acid pairs. On the other hand, Woese
et al. have evaluated chromatographically the interac-
tion propensities of amino acids and different pyridine
derivatives in water [87,88]. Finally, several groups have
studied interactions between different nucleotides and
polyamino acids, focusing typically on polylysine or
polyarginine peptides [89-91]. The scarcity of the exper-
imental studies in this context can in part be attributed
to the low solubility of bases and some side chains as
well as the weak interaction strengths involved. For
example, our recent work suggests that only a handful
of nucleobase side-chain affinities exceed 1 kgT [81,82].
As discussed below, however, we see a systematic exper-
imental determination of such affinities as one of the
major open challenges for the future.

Nucleobase-amino acid affinities
reflect the genetic code organization

As discussed above, RNA—protein interactions in an
unstructured context are a ubiquitous feature of mod-
ern biological systems. However, they also provide an

RNA-protein interactions in unstructured context

important perspective for understanding the establish-
ment of the RNA-protein relationship in primordial
systems in which structural disorder is likely to have
been even more pervasive [92]. This, in particular, con-
cerns the central aspect of the whole RNA-protein
relationship: the process of translation and the genetic
code [93,94]. Namely, with minor variations, the
genetic code is universally conserved and it, without
exaggeration, represents the very point where biologi-
cal phenotype and genotype meet. However, despite 50
years of effort, the nature of the driving forces behind
its establishment has remained largely unknown. Over
the years, multiple theories have been proposed in this
regard with varying levels of evidence [94-97]. Of rele-
vance here, the ‘stereochemical hypothesis’ suggests
that the key feature of ancient translation was a direct
interaction between codons and amino acids they code
for [87,88,94,98]. Although specific binding of isolated
codons and their cognate amino acids has never been
observed, analysis of amino acid-binding RNA apta-
mers [98] and RNA-protein interactions in the ribo-
some [99] has revealed that not only some codons but
also anticodons, preferentially colocalize with their
cognate amino acids. Importantly, early support for
the hypothesis came from Woese and coworkers who
analyzed the interaction preferences between amino
acids and pyrimidine mimetics pyridines [87,88,94,100]
(see also above). They showed that amino acids with a
similar propensity to interact with pyridines also have
similar codons.

A common feature of most studies of the code’s origin
has been their focus on individual codons and amino
acids only [93,94,101] with little attention paid to the
properties of longer biopolymers. However, any biases
present at the level of individual groups may get cooper-
atively amplified in such cases, facilitating their detec-
tion. Moreover, if the stereochemical hypothesis is
indeed true, then the genetic code could also be seen as a
key for understanding RNA—protein interactions in gen-
eral. Following this paradigm, we have recently
explored the link between the physicochemical proper-
ties of mRNAs and the proteins they encode [102,103]
and have made a surprising discovery. First, using both
experimental and computational nucleobase—amino acid
affinity scales, we could show that the nucleobase con-
tent of a given codon is directly related to the affinities
of its cognate amino acids for the respective nucleobases
(Fig. 4A). For example, the codon PYR content corre-
lates with the PYR-mimetic affinity of the cognate
amino acids with a Pearson R of —0.61, while the codon
PUR content correlates with the knowledge-based
GUA -affinities of the cognate amino acids with a Pear-
son R of —0.68 (Fig. 4A). What is more, this
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Fig. 4. The complementarity hypothesis. (A) Codon PYR content correlates with the cognate amino acid affinity for PYR mimetics [100],
while codon PUR content correlates with the cognate amino acid affinity for GUA [50]. (B) Right: profile calculation method together with a
typical pair of mMRNA PYR density and protein PYR-mimetic affinity profiles in human; left: Pearson Rs for mRNA PYR density/protein PYR-
mimetic affinity profiles in 15 species. (C) Left: Location of top matches for human mRNAs and cognate proteins, including UTRs and
transition regions (violet/olive) for mRNA PUR density/protein ADE affinity, and mRNA PYR density/protein PYR affinity cases. Numbers of
top matches are given above bars. Right: An example of a top match between mRNA PUR density and cognate protein ADE affinity.
Figures 4A and 4B were reproduced with permission (Oxford University Press) from Ref. [102].
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relationship was even further magnified in the context of
complete biopolymers. A pyrimidine (PYR) density pro-
file of an mRNA coding sequence can be obtained as a
running average of the PYR content of its codons
(Fig. 4B). Similarly, a PYR-affinity profile of the cog-
nate protein can be estimated by weighting its sequence
by the amino acid propensities to interact with PYR
mimetics as captured in Woese’s experiments or subse-
quent simulations [88,100]. The remarkable finding is
that for most mRNA-protein pairs the two profiles
match closely when aligned [102,103]. For example, the
median Pearson correlation coefficient R between the
two profiles over all human pairs is R = —0.74 (note
that all affinity scales are defined such that negative Rs
mean matching [102,103]).

This is unexpected and potentially far-reaching:
although mRNAs and their cognate proteins are com-
pletely different biopolymers, they exhibit a strong,
quantitative complementarity in that the density of a
particular type of groups in one of them can be accu-
rately predicted from the affinity profile for similar
groups in the other one. Importantly, we could show
that this finding is statistically extremely robust and
holds equally well for organisms from all three
domains of life (Fig. 4B) [102,103]. Moreover, we have
confirmed these findings for biologically relevant PYRs
as well as extended them to purines (PURs) by using
knowledge-based nucleobase—amino acid affinities
derived from structures of RNA-protein complexes
[50,103]. For example, mRNA PUR density profiles
quantitatively match GUA-affinity profiles of cognate
proteins, with a median of R = —0.80 in human
[50,103]. Notably, protein ADE affinity profiles exhibit
a reverse property in that they match the PYR density
of cognate mRNAs. We have shown that this stems
from biosynthetically more complex amino acids that
are thought to have entered biology later [50,103].
Finally, we have fully corroborated the above findings
by using affinities derived by orthogonal approaches
including umbrella-sampling MD simulations [81,82]
or modeling of partitioning experiments [83,84].

The above results provide support for the stereochem-
ical hypothesis of the origin of the genetic code, but they
emphasize the importance of an extended, polymeric
context in which the relatively weak affinities of individ-
ual building blocks can be amplified. Moreover, these
findings support a novel hypothesis that in the unstruc-
tured state, mRNAs and the proteins they encode may
be complementary to each other and bind in a coaligned
manner, whereby the complementarity level is nega-
tively regulated by mRNA ADE content [50,51,81—
84,103-105]. Since compositional matching is seen for
primary sequence profiles, we expect that the strongest

RNA-protein interactions in unstructured context

interactions will occur if the partners are unstructured,
yielding dynamic, multivalent, liquid-like complexes: in
addition to IDPs, the hypothesis applies equally well to
the unfolded states of otherwise folded proteins [51].
Importantly, the coarse-grained nature of the comple-
mentarity hypothesis allows one to extend it to interac-
tions between unstructured proteins and nucleic acids
other than their cognate mRNA coding regions
[102,103]. The key point is that a physicochemical view
of biomolecular sequences provides a measure of both
binding propensity in an unstructured context and evo-
lutionary relatedness for different RNA and protein
molecules. In this sense, the above findings could be
interpreted as general rules for understanding RNA-
protein interactions: amino acids whose codons are
enriched in PYR also display proteome-wide tendencies
to be specific for PYR or ADE, while polar amino acids,
encoded by PUR, predominantly interact with GUA
(Fig. 4A). Moreover, these rules could be applied in
noncoding situations as well. This can be illustrated in
the case of noncoding 5’ and 3’ untranslated regions
(UTRs) of mRNAs. For example, for hundreds of
human mRNA sequences, the top match between the
mRNA nucleobase density profiles and their cognate
proteins’ nucleobase-affinity profiles is observed in the
UTRs or in the transitional regions including a UTR
and a part of the coding sequence (Fig. 4C). In fact, for
mRNA ADE density profiles, the majority of mRNAs
and their cognate proteins fall into these categories. This
is well illustrated in the case of HoxB4 mRNA and its
cognate protein, where the top matching region includes
a significant part of the 5 UTR (Fig. 4C). As a whole,
the above findings suggest that the structure of the uni-
versal genetic code reflects, in part, the binding speci-
ficity between nucleobases and amino acids and,
conversely, support an exciting possibility that the uni-
versal genetic code may be seen as a key for understand-
ing RNA-protein interactions in the unstructured
context and beyond (Fig. 5).

Significance and outlook

An improvement in our understanding of the RNA-
protein interactions in the unstructured context,
including the ability to predict binding sites and relative
affinities, would represent a major step forward from
both fundamental and practical perspectives. Currently,
most of our knowledge of RNA-protein interactions
concerns structured RNA-binding motifs and,
consequently, computational methods for predicting
RNA-protein interactions in a physicochemically and
structurally realistic manner are necessarily limited and
biased by such knowledge [21,53-55,59,106]. Similarly
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Fig. 5. The universal genetic code as the Rosetta stone for understanding RNA-protein interactions.

problematic, the sequence-based computational
approaches for predicting RNA-protein interactions
typically involve machine learning strategies and only
indirectly rely on or help further understand the micro-
scopic physicochemical principles behind such interac-
tions [53-55]. While experimental approaches toward
enumerating and characterizing RNA interactions with
IDPs are making significant advances [2,5,8-10,29,63],
they are limited by the fact that the microscopic, high-
resolution features of such complexes are largely beyond
the reach of modern structural biology methods. It is,
therefore, imperative to explore the existence of general,
novel physicochemical principles behind such interac-
tions. Our ‘complementarity hypothesis’ may provide
one such principle. In general, physicochemical comple-
mentarity is one of the most powerful paradigms used
to explain biological function at the molecular level.
Complementarity between DNA strands is the key ele-
ment behind gene duplication, antibody—antigen com-
plementarity guides immune response, while enzymes
cannot be understood without the complementarity
between active sites and reaction transition states.
Therefore, it is potentially extremely far-reaching that
RNA and protein sequences, including both cognate
mRNA-protein pairs, as shown in our recent work
[50,51,81,83,84,103—105] and those not connected by
coding, as illustrated above, would exhibit such a robust
compositional complementarity. This finding simply
demands detailed exploration and full explanation and
we see it as a major challenge for the future. Having said
this, the range of validity and general applicability of
the ‘complementarity hypothesis’ remain unclear: for

2910

example, the fact that the contour length of a typical
mRNA coding region is approximately five times longer
than the contour length of its cognate protein suggests
that any physical realization of putative complementary
binding must negotiate a significant spatial challenge.
However, the hypothesis provides a well-defined, testa-
ble framework for relating the fundamental physico-
chemical properties of nucleobases and amino acids
with the interactions of complete RNAs and proteins in
an unstructured context. Moreover, the hypothesis pro-
motes a way of looking at RNA-protein interactions
that could be of practical importance regardless of
whether the hypothesis itself turns out to be true or not.
In particular, viewing RNA and protein sequences as
physicochemical entities, with specific properties and
local interaction propensities, presents a powerful para-
digm for linking the speed and power of standard bioin-
formatic techniques with the atomistically realistic
rigor. The consequences of this line of research poten-
tially concern all canonical areas of bioinformatics and
computational biology ranging from sequence compar-
ison to multiple sequence alignment to building of phy-
logenetic trees.

There are a number of important open challenges
regarding the RNA—protein interactions in an unstruc-
tured context. Here, we outline what we believe are
the three most relevant and fundamental such chal-
lenges that have thus far, somewhat surprisingly,
escaped wider attention. We firmly believe that these
issues hold a key to a deeper understanding of RNA-
protein interactions in an unstructured context, but
could also prove to be essential on a much wider scale.
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CHALLENGE 1: experimental determination of
nucleotide—-amino acid affinities

Nucleotides and amino acids are arguably the most
fundamental building blocks in all living matter.
Moreover, the specificity in interactions between
nucleic acids and proteins is directly shaped by the
specificity in interactions between these individual
building blocks. Considering this, it is remarkable that
the pioneering, yet incomplete experimental studies
aimed at determining the affinities between individual
nucleotides and amino acids, that is, their fragments
[85-91], have not been extended since the 1960s and
1970s when they were first performed. There currently
exists no self-consistent, experimentally determined
table of absolute or, for that matter, relative binding
AGs between the 5 standard RNA-DNA nucleotides
(i.e., nucleosides/nucleobases) and the 20 standard
amino acids (i.e., amino acid side chains). As discussed
above, there is a growing body of computational/theo-
retical work in this regard [50,77-80], but the experi-
mental contributions remain surprisingly incomplete.
A part of the reason for this are the low solubilities of
some of the groups and/or the low affinities involved,
but we are firmly convinced that these difficulties can
be successfully addressed with the aid of clever experi-
mental strategies using, for example, affinity chro-
matography, NMR, microscale thermophoresis, or
high-precision ITC. A natural extension of such stud-
ies would be a careful dissection of the binding contri-
butions of different fragments of individual nucleotides
and amino acids, such as the sugar or the phosphate
groups, as well as an analysis of the impact of post-
transcriptional nucleotide modifications and post-
translational amino acids modifications on the individ-
ual binding affinities. For example, by using a purely
computational analysis, we have recently shown that
deamination of adenine, one of the most biologically
important post-transcriptional nucleobase modifica-
tions, changes its interaction pattern with amino acids
to that of guanine [107]. It would be critical that such
and similar studies be extended from an experimental
side as well. One criticism may be that nucleotide—
amino acid interactions will be severely context depen-
dent and susceptible to local environmental influences
(pH, ionic strength, dielectric constant, temperature
etc.) and, therefore, too difficult to accurately pin
down. While we share this apprehension, we are con-
vinced that a systematic analysis of such influences is
in order. Moreover, our computational results strongly
suggest that certain robust patterns of behavior remain
even under changing environmental conditions [81,82].
Such robustness, after all, must be there simply for the

RNA-protein interactions in unstructured context

biological systems to be able to function in a stable
way.

CHALLENGE 2: analysis of sequence specificity in
the formation of phase-separated granules

Phase-separated granules represent arguably the best,
biologically relevant system for studying the interac-
tions between RNA and proteins in an unstructured
context [16-20]. On the one hand, single-stranded
RNA and disordered proteins are ubiquitous con-
stituents of such granules. On the other hand, the
weak, multivalent, dynamic complexes formed by dis-
ordered RNA and proteins naturally lead to liquid-lig-
uid phase separation that can also be well studied
in vitro. In other words, phase separation and RNA-
protein interactions in an unstructured context go
hand in hand and should therefore be studied from a
joint perspective: understanding of RNA—protein inter-
actions in the unstructured state will provide critical
information for the understanding of granule forma-
tion and vice versa. Importantly, a growing body of
work has shown that the presence of RNA, and in
particular single-stranded RNA, markedly reduces the
critical concentration required for the formation of
phase-separated protein granules [20,25,27]. However,
a major open question concerns the sequence speci-
ficity behind such effects. In most cases, the authors
have used random RNA sequences and/or select
homooligonucleotides, but there have been no fully
systematic attempts at understanding how different
RNA, that is, protein sequences influence each other
in this regard. We predict that the impact of different
RNAs on the formation of protein granules will follow
the rules given by the universal genetic code
[50,102,103]. For example, we predict that GUA-rich
sequences will have a stronger effect on the phase sep-
aration of protein sequences containing mostly polar
residues, while ADE/PYR-rich sequences will have a
stronger impact on the more hydrophobic protein
sequences. In the context of the complementarity
hypothesis discussed above, it would also be particu-
larly interesting to systematically study the impact of
cognate mRNA-protein pairs when it comes to gran-
ule formation. These studies should go hand in hand
with the determination of the individual binding affini-
ties between nucleotides and amino acids and their
environmental dependence as outlined in the first chal-
lenge above. For example, phase-separated granules
are known to be partially dehydrated, low-dielectric
environments in which the relative nucleotide—amino
acid affinities may follow different rules than in the
more aqueous environments. Our umbrella-sampling
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calculations have shown that in methanol, a solvent
with a significantly lower dielectric constant as com-
pared to water, the affinity of GUA for the negatively
charged Asp and Glu side chains increases multiple-fold
as compared to that in water [81,82]. Such and similar
analyses will be necessary for the full understanding of
microscopic driving forces behind the formation of
phase-separated granules. Conversely, phase-separated
granules will provide the proper biological context for
studying the intricacies of the binding preferences
between individual nucleotides and amino acids and
RNA-IDP interactions in general.

CHALLENGE 3: development of computational
tools for the prediction/analysis of RNA-protein
binding in an unstructured context

The third open challenge concerns the development of
computational frameworks for predicting the sites and
the strength of interaction between RNA and unstruc-
tured protein regions that would be based on funda-
mental physicochemical principles. While the top-down
machine learning-based approaches definitely have sig-
nificant merit, the more physicochemically motivated,
bottom-up strategies could provide a deeper mechanis-
tic insight and have a greater predictive power. When it
comes to the interaction between single-stranded RNAs
and largely unstructured proteins, successful strategies
could be based on the knowledge of the intrinsic inter-
action affinities between the individual building blocks
of the two polymers, as discussed above. Presently, we
do not have a clear prescription for how this could be
implemented practically, but are motivated by a simple
analogy. Namely, hybridization of two strands of
DNA or folding of an RNA molecule can be well pre-
dicted from a simple thermodynamic quantification of
Chargaff pairing rules and local stacking propensities
[108,109]. Local affinities of nucleotides for each other,
together with some understanding of the effect of local
neighboring sequences and structures are often suffi-
cient to predict, for example, the melting temperatures
of duplexes or the folds of individual RNA molecules
[108,109]. The point here is that the global structural
and thermodynamic behavior of large nucleic acid
molecules can be related to their linear sequence fea-
tures and local interaction preferences. It is our hope
that the rich world of RNA-protein interactions in an
unstructured context could also in part be understood
in such simple terms, which in turn would open up a
myriad of different fundamental and applied possibili-
ties. We are particularly excited by the possibility that
the rules behind such interactions may actually be

B. Zagrovic et al.

embedded in an ancient, already familiar codebook:
the universal genetic code.
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