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Abstract
In this paper, we study a nonparametric additive regression
model suitable for a wide range of time series applications.
Our model includes a periodic component, a determinis-
tic time trend, various component functions of stochastic
explanatory variables, and an AR(p) error process that
accounts for serial correlation in the regression error. We
propose an estimation procedure for the nonparametric
component functions and the parameters of the error pro-
cess based on smooth backfitting and quasimaximum like-
lihood methods. Our theory establishes convergence rates
and the asymptotic normality of our estimators. Moreover,
we are able to derive an oracle-type result for the estima-
tors of the AR parameters: Under fairly mild conditions,
the limiting distribution of our parameter estimators is the
same as when the nonparametric component functions are
known. Finally, we illustrate our estimation procedure by
applying it to a sample of climate and ozone data collected
on the Antarctic Peninsula.
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1 INTRODUCTION

In many time series applications, the data at hand exhibit seasonal fluctuations and a trend-
ing behavior. A common way to incorporate these features is to assume that the data generating
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process can be written as the sum of a seasonal part, a deterministic time trend, and a station-
ary stochastic process. In general, the structure of these three components is largely unknown.
This necessitates the development of flexible semiparametric and nonparametric methods in
order to estimate them.

Let {Yt,T ∶ t = 1, … ,T} be the time series under investigation. A general semiparametric
framework that decomposes Yt,T into a seasonal, a trend, and a stationary stochastic component
is given by the regression model

Yt,T = m𝜃(t) + m0

( t
T

)
+ m(Xt) + 𝜀t for t = 1, … ,T (1)

withE[𝜀t | Xt] = 0. Here, m𝜃 is a periodic function with a known integer period 𝜃 and m0 is a deter-
ministic time trend. The stochastic component consists of the residual 𝜀t and of the term m(Xt)
that captures the influence of the d-dimensional stationary covariate vector Xt = (X1

t , … ,Xd
t ). We

do not impose any parametric restrictions on the component functions m𝜃 , m0, and m. Moreover,
we allow for correlation in the error terms 𝜀t, which are modeled as a stationary AR(p) process.
Note that, as usual in nonparametric regression, the time argument of the trend function m0 is
rescaled to the unit interval.

Two special cases of model (1) have been considered in the literature. The fixed design setting
Yt,T = m0

(
t
T

)
+ 𝜀t was analyzed, for example, in the works of Truong (1991), Altman (1993),

Hall and van Keilegom (2003), and Shao and Yang (2011), who provided a variety of methods to
estimate the nonparametric trend function m0 and the AR parameters of the error term. Interest-
ingly, they established an oracle-type result for the estimation of the AR parameters. In particular,
they showed that the limiting distribution of the parameter estimators is unaffected by the need
to estimate the nonparametric function m0. The second special case of model (1) is the setting
Yt = m(Xt) + 𝜀t. The problem of estimating the AR parameters in this setup has been studied
under the restriction that {Xt} is independent of the error process {𝜀t}. Truong and Stone (1994),
Schick (1994), and Lin, Pourahmadi, and Schick (1999) showed that, under this restriction, an
oracle-type result for the parameter estimators holds analogous to that in the fixed design setting.

In this paper, we study the estimation of the parametric and nonparametric components in the
general model (1). We allow {Xt} and {𝜀t} to be dependent, thus dispensing with the very restric-
tive assumption that the covariate process is independent of the errors. In order to circumvent the
well-known curse of dimensionality, we assume the function m to be additive with component
functions mj for j = 1, … , d, thus yielding

Yt,T = m𝜃(t) + m0

( t
T

)
+

d∑
𝑗=1

m𝑗

(
X𝑗

t
)
+ 𝜀t for t = 1, … ,T. (2)

A full description of model (2) together with a discussion of its components is given in
Section 2.

Our estimation procedure is introduced in Section 3. The nonparametric components m𝜃 and
m0, … ,md are estimated by extending the smooth backfitting approach of Mammen, Linton,
and Nielsen (1999), who derived its asymptotic properties in a strictly stationary setup. Due to
the inclusion of the periodic and the deterministic trend components, our model dynamics are
no longer stationary. In Sections 3.1 and 3.2, we describe how to incorporate this type of nonsta-
tionarity into the smooth backfitting procedure. Given our estimators m̃𝜃 and m̃0, … , m̃d of the
functions m𝜃 and m0, … ,md, we can construct approximate expressions �̃�t of 𝜀t. Using these,
the parameters of the AR(p) error process are estimated via a quasimaximum likelihood-based
method, the details of which are given in Section 3.3.
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Section 4 contains our results on the asymptotic properties of our estimators. In Sections 4.2
and 4.3, we provide the convergence rates of the nonparametric estimators m̃𝜃 and m̃0, … , m̃d, as
well as their Gaussian limit distribution. The asymptotic behavior of the parameter estimators of
the AR( p) error process is studied in Section 4.4. There, we show that the parameter estima-
tors are asymptotically normal. Deriving the limit distribution of the parameter estimators is
by far the most difficult part of the theory developed in this paper. To do so, we need to estab-
lish a higher-order stochastic expansion of the first derivative of the likelihood function. This
requires substantially different and much more intricate techniques than those in the analysis of
the special cases previously discussed in the literature.

As we will see, the asymptotic distribution of our parameter estimators in general differs
from that of the oracle estimators constructed under the assumption that the additive component
functions are known. Thus, the additional uncertainty that stems from estimating the compo-
nent functions does have an impact on the asymptotic distribution of our parameter estimators
in general. However, an oracle-type result can be established under additional conditions on the
dependence structure between the covariates Xt and the errors 𝜀t. In particular, the limit distri-
bution of our parameter estimators coincides with that of the oracle estimators if we additionally
assume that E[𝜀t | Xt+k] = 0 for all k = −p, … , p. This assumption is evidently much weaker
than imposing independence between {Xt} and {𝜀t} as in the simpler settings discussed above.
Our theory thus generalizes the previously found oracle-type results.

We illustrate our estimation procedure by applying it to monthly minimum temperature and
ozone data from the Faraday/Vernadsky research station on the Antarctic Peninsula in Section 5.
The nice thing about this application is that Hughes, Subba Rao, and Subba Rao (2007) used a
parametric regression model setup with AR errors to analyze the same data. Hence, our analysis
can be regarded as a semiparametric extension to their study and we can get an impression of
what can be gained by using our more flexible specification in this setting.

2 MODEL
Before we introduce our estimation procedure, we take a closer look at model (2) and comment
on some of its features. We observe a sample of data {(Yt,T,Xt) ∶ t = 1, … ,T}, where Yt,T are
real-valued random variables and Xt = (X1

t , … ,Xd
t ) are Rd-valued random vectors that form a

strictly stationary process. As already noted in the introduction, the data are assumed to satisfy
the model equation

Yt,T = m𝜃(t) + m0

( t
T

)
+

d∑
𝑗=1

m𝑗

(
X𝑗

t
)
+ 𝜀t for t = 1, … ,T (3)

with E[𝜀t | Xt] = 0, where m𝜃 is a periodic component with some integer-valued period 𝜃, m0 is
a deterministic trend, and mj are nonparametric functions of the regressors X𝑗

t for j = 1, … , d.
For simplicity, we assume that the period 𝜃 is known. Methods to estimate 𝜃 can, for example,
be found in the work of Vogt and Linton (2014). By including the periodic component m𝜃 and
the deterministic trend m0, the dynamics of Yt,T depend on time and are thus nonstationary. The
errors {𝜀t} follow a stationary AR(p) process of the form

𝜀t =
p∑

i=1
𝜙∗

i 𝜀t−i + 𝜂t for all t ∈ Z,

where 𝜙∗ = (𝜙∗
1, … , 𝜙∗

p) is the vector of parameters, the AR order p is assumed to be known, and
the residuals 𝜂t form a martingale difference with respect to t = {Xt,Xt−1, … , 𝜀t−1, 𝜀t−2, … }.
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The additive functions in model (3) are only identified up to an additive constant. To identify
them, we assume that the constant is absorbed into the periodic component and the remaining
components have zero mean, that is,

∫
1

0
m0(x0)dx0 = 0 and ∫ m𝑗(x𝑗)p𝑗(x𝑗)dx𝑗 = 0 for 𝑗 = 1, … , d, (4)

where pj is the marginal density of X𝑗
t . The covariates X𝑗

t are assumed to take values in a bounded
interval that, without loss of generality, is taken to be [0, 1] for each j = 1, … , d. Throughout this
paper, the symbol x0 is used to denote a point in rescaled time. Moreover, we write x = (x0, x−0)
with x−0 = (x1, … , xd).

To be able to do reasonable asymptotics, we let the trend function m0 in model (3) depend
on rescaled time t

T
rather than on real time t. If we defined m0 in terms of real time, we would

not get additional information on the structure of m0 locally around a fixed time point t as the
sample size increases. Within the framework of rescaled time, in contrast, the function m0 is
observed on a finer and finer grid of rescaled time points on the unit interval as T grows. Thus,
we obtain more and more information on the local structure of m0 around each point in rescaled
time. This is the reason why we can make reasonable asymptotic considerations within this
framework.

In contrast to m0, we let the periodic component m𝜃 in model (3) be a function of real time t.
This allows us to exploit its periodic character when doing asymptotics: Assume that we want to
estimate m𝜃 at a time point t𝜃 ∈ {1, … , 𝜃}. As m𝜃 is periodic, it has the same value at t𝜃, t𝜃 +
𝜃, t𝜃 + 2𝜃, t𝜃 + 3𝜃, and so on. Hence, if m𝜃 depends on real time t, the number of time points
in our sample at which m𝜃 has the value m𝜃(t𝜃) increases as the sample size grows. This gives us
more and more information about the value m𝜃(t𝜃) and thus allows us to do asymptotics.

3 ESTIMATION PROCEDURE

We now describe how the various components of model (3) are estimated. Our procedure consists
of three steps. In the first step, the periodic model component m𝜃 is estimated. The estimation
of the nonparametric functions m0, … ,md is addressed in the second step. Finally, we use the
estimators of the additive component functions to construct estimators of the AR parameters.

3.1 Estimation of m𝜽

For any time point t = 1, … ,T, let t𝜃 = t − ⌊ t−1
𝜃
⌋𝜃 with ⌊x⌋ denoting the largest integer that is

smaller than or equal to x. Our estimator of the periodic component m𝜃 is defined as

m̃𝜃(t) =
1

Kt𝜃 ,T

Kt𝜃 ,T∑
k=1

Yt𝜃+(k−1)𝜃,T for t = 1, … ,T, (5)

where Kt𝜃 ,T = 1+⌊T−t𝜃
𝜃
⌋ is the number of observations that satisfy t = t𝜃 + k𝜃 for some k ∈ N. The

estimator has a very simple structure. It is the empirical mean of observations that are separated
by a multiple of 𝜃 time points. Later on, we will show that m̃𝜃 is asymptotically normal. Note
that this result is robust to the presence of the deterministic trend function m0. In particular, we
will see that the effect of the unknown time trend m0 on the estimator m̃𝜃 can be asymptotically
neglected.
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3.2 Estimation of m0, … ,md

We next introduce the estimators of the functions m0, … ,md. For the time being, let us assume
that the periodic component m𝜃 is known. Later on, m𝜃 will be replaced by its estimator m̃𝜃 . Given
that m𝜃 is known, Zt,T = Yt,T − m𝜃(t) is observable. This allows us to rewrite model (3) as

Zt,T = m0

( t
T

)
+

d∑
𝑗=1

m𝑗

(
X𝑗

t
)
+ 𝜀t. (6)

In order to estimate the functions m0, … ,md in (6), we extend the smooth backfitting approach
of Mammen et al. (1999), who derived the asymptotic properties of this approach in a strictly sta-
tionary setup. Model (6) involves a deterministic time-trend component, which makes the model
dynamics nonstationary. In what follows, we describe how to modify the smooth backfitting
procedure to allow for this type of nonstationarity.

To do so, we first introduce the auxiliary estimators

q̂(x) = 1
T

T∑
t=1

Kh

(
x0,

t
T

) d∏
k=1

Kh
(

xk,Xk
t
)

m̂(x) = 1
T

T∑
t=1

Kh

(
x0,

t
T

) d∏
k=1

Kh
(

xk,Xk
t
)

Zt,T∕q̂(x).

q̂(x) is a kernel estimator of the density q(x) ∶ = I(x0 ∈ [0, 1])p(x−0) with p being the joint density
of the regressors Xt = (X1

t , … ,Xd
t ). Moreover, m̂(x) is a (d + 1)-dimensional Nadaraya–Watson

estimator of the regression function m(x) = m0(x0) + … + md(xd). In these definitions,

Kh(v,w) = Kh(v − w)
∫ 1

0 Kh(s − w)ds

is a modified kernel weight, where h denotes the bandwidth, Kh(v) = 1
h

K
(

v
h

)
, and the kernel

function K(·) integrates to one. These weights have the property that ∫ 1
0 Kh(v,w)dv = 1 for all w,

which is needed to derive the asymptotic results for the backfitting estimators.
Given the smoothers q̂ and m̂, we define the smooth backfitting estimators m̃0, … , m̃d as the

minimizers of the criterion

∫[0,1]d+1
(m̂(x) − g0(x0) − · · · − gd(xd))2q̂(x)dx, (7)

where the minimization runs over all additive functions g(x) = g0(x0) + · · · + gd(xd) whose com-
ponents satisfy ∫ 1

0 g𝑗(x𝑗)p̂𝑗(x𝑗)dx𝑗 = 0 for j = 0, … , d. Here, p̂𝑗 is a kernel estimator of pj for
j = 0, … , d, where we define p0(x0) = I(x0 ∈ [0, 1]). Explicit expressions for these estimators
are given below in (9) and (12).

According to the definition in (7), the backfitting estimator m̃ = m̃0 + · · · + m̃d is an
L2-projection of the (d + 1)-dimensional Nadaraya–Watson smoother m̂ onto the space of addi-
tive functions with respect to the density q̂. Rescaled time is treated as an additional component
in this projection. In particular, note that q̂ estimates the product of a uniform density over [0, 1]
and the density p of the regressors Xt. This shows that rescaled time is treated in a similar way
to an additional stochastic regressor that is uniformly distributed over [0, 1] and independent of
the variables Xt. The heuristic idea behind this is the following. Firstly, as the variables Xt are
strictly stationary, their distribution is time-invariant. In this sense, their stochastic behavior is
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independent of rescaled time t
T

. Thus, rescaled time behaves similarly to an additional stochas-
tic variable that is independent of Xt. Secondly, as the points t

T
are evenly spaced over the unit

interval, a variable with a uniform distribution closely replicates the pattern of rescaled time.
By differentiation, we can show that the solution to the projection problem (7) is characterized

by the system of integral equations

m̃𝑗(x𝑗) = m̂𝑗(x𝑗) −
∑
k≠𝑗 ∫

1

0
m̃k(xk)

p̂k,𝑗(xk, x𝑗)
p̂𝑗(x𝑗)

dxk − m̃c (8)

with ∫ 1
0 m̃𝑗(x𝑗)p̂𝑗(x𝑗)dx𝑗 = 0 for j = 0, … , d. As we do not observe the variables Zt,T = Yt,T −

m𝜃(t), we define the kernel estimators in (8) in terms of the approximations Z̃t,T = Yt,T − m̃𝜃(t). In
particular, we let

p̂𝑗(x𝑗) =
1
T

T∑
t=1

Kh
(

x𝑗 ,X𝑗
t
)

(9)

p̂𝑗,k(x𝑗 , xk) =
1
T

T∑
t=1

Kh
(

x𝑗 ,X𝑗
t
)

Kh
(

xk,Xk
t
)

(10)

m̂𝑗(x𝑗) =
1
T

T∑
t=1

Kh
(

x𝑗 ,X𝑗
t
)

Z̃t,T∕p̂𝑗(x𝑗) (11)

for j, k = 1, … , d with j ≠ k, where p̂𝑗 is the one-dimensional kernel density estimator of the
marginal density pj of X𝑗

t , p̂𝑗,k is the two-dimensional kernel density estimator of the joint density
pj,k of (X𝑗

t ,X
k
t ), and m̂𝑗 is a one-dimensional Nadaraya–Watson smoother. Moreover,

p̂0(x0) =
1
T

T∑
t=1

Kh

(
x0,

t
T

)
(12)

p̂0,k(x0, xk) =
1
T

T∑
t=1

Kh

(
x0,

t
T

)
Kh

(
xk,Xk

t
)

(13)

m̂0(x0) =
1
T

T∑
t=1

Kh

(
x0,

t
T

)
Z̃t,T∕p̂0(x0) (14)

for k = 1, … , d and m̃c = 1
T

∑T
t=1 Z̃t,T . Note that it would be more natural to define p̂0(x0) = I(x0 ∈

[0, 1]), as we already know the “true density” of rescaled time. However, for technical reasons,
we set p̂0(x0) = 1

T

∑T
t=1 Kh

(
x0,

t
T

)
. This creates a behavior of the estimator p̂0 in the boundary

region of the support [0, 1] analogous to that of p̂𝑗 at the boundary. Alternatively, we could define
p̂0(x0) = ∫ 1

0 Kh(x0, v)dv. (Note that ∫ 1
0 Kh(x0, v)dv = 1 for x0 ∈ [2C1h, 1 − 2C1h], where [ −C1,C1]

is the support of the kernel function K.) Moreover, we could set p̂0,k(x0, xk) = p̂0(x0)p̂k(xk), thereby
exploiting the “independence” of rescaled time and the other regressors.

In our theoretical analysis, we work with the smooth backfitting estimators characterized
as the solution to the system of integral equations (8). In general, however, the system of
equations (8) cannot be solved analytically. Nevertheless, the solution can be approximated
by a backfitting algorithm that converges for arbitrary starting values. The algorithm can be
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summarized as follows. Let m̃[0]
𝑗

be starting values for j = 0, … , d. In the rth iteration step, one
cycles through all the components j = 0, … , d and computes

m̃[r]
𝑗
(x𝑗) = m̂𝑗(x𝑗) −

∑
k<𝑗

∫
1

0
m̃[r]

k (xk)
p̂k,𝑗(xk, x𝑗)

p̂𝑗(x𝑗)
dxk −

∑
k>𝑗

∫
1

0
m̃[r−1]

k (xk)
p̂k,𝑗(xk, x𝑗)

p̂𝑗(x𝑗)
dxk − m̃c

for each j. In the work of Mammen et al. (1999), the asymptotic properties of this algorithm are
established under very general conditions that are implied by our assumptions in Section 4.1.
Under these general conditions, it can be shown that, with probability tending to 1,

∫
1

0

[
m̃[r]
𝑗
(x𝑗) − m̃𝑗(x𝑗)

]2
p𝑗(x𝑗)dx𝑗 ≤ c𝛾2r

(
1 +

d∑
𝑗=0 ∫

1

0

{
m̃[0]
𝑗
(x𝑗)

}2
p𝑗(x𝑗)dx𝑗

)
with some constants 0 < 𝛾 < 1 and c > 0. Hence, m̃[r]

𝑗
converges to m̃𝑗 at the order O(𝛾2r)

in an L2-sense. In practice, the backfitting algorithm is iterated until some convergence cri-
terion is satisfied. In the empirical part of this paper, we work with the following stopping
rule. The algorithm terminates either after a maximum of 50 iterations or if, for all directions
j = 0, … , d,

∫ [
m̃[r]
𝑗
(x𝑗) − m̃[r−1]

𝑗
(x𝑗)

]2
dx𝑗

∫ [
m̃[r−1]
𝑗

(x𝑗)
]2

dx𝑗 + 𝛿
≤ 𝛿,

where 𝛿 is a small number that is set to 10−5 in our code.
Our smooth backfitting estimators are based on Nadaraya–Watson pilot smoothers. Alter-

natively, local linear smoothers could be used. Throughout this paper, we restrict attention to
Nadaraya–Watson-based smooth backfitting because the derivations and the notation would
become even more involved in the local linear case. From a theoretical point of view, local linear
smoothers have the advantage that they are design adaptive and, thus, do not suffer from bound-
ary problems. As shown in the work of Mammen et al. (1999) in the strictly stationary case, this
advantage carries over to the local linear based smooth backfitting estimators; see theorem 4' in
the work of Mammen et al. (1999) and the discussion thereafter. In applications where forecasts
are performed, a particular interest lies in the value of the trend function m0 at the rescaled time
point u = 1. Hence, a good boundary behavior is particularly important for the trend component
m0. To reduce the boundary bias in time direction, one could use a local linear pilot smoother
in time direction while working with Nadaraya–Watson or local linear smoothers in the other
directions.

3.3 Estimation of the AR parameters
To motivate the third step in our estimation procedure, we shall initially consider an infeasible
estimator of the AR parameters. Suppose that the functions m𝜃,m0, … ,md were known. In this
situation, the AR(p) error process {𝜀t} would be observable because 𝜀t = Yt,T −m𝜃(t) −m0

(
t
T

)
−∑d

𝑗=1 m𝑗(X𝑗
t ). The parameters 𝜙∗ = (𝜙∗

1, … , 𝜙∗
p) of the error process could thus be estimated

by standard maximum likelihood methods. In particular, we could use a conditional maximum
likelihood estimator of the form

�̂� = argmax
𝜙∈Φ

lT(𝜙), (15)
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where Φ is a compact parameter space and lT is the conditional log-likelihood given by

lT(𝜙) = −
T∑

t=p+1
(𝜀t − 𝜀t(𝜙))2 (16)

with 𝜀t(𝜙) =
∑p

i=1 𝜙i𝜀t−i. Note that �̂� has a closed-form solution that is identical to the usual least
squares estimator. We will, however, not work with this closed-form solution in what follows.
Instead, we will formulate our proofs in terms of the likelihood function. This makes it easier to
apply our arguments to other error structures such as ARCH processes. We give some comments
on how to extend our approach in this direction in Section 6.

As the functions m𝜃,m0, … ,md are not observed, we cannot use the standard approach from
above directly. However, given the estimators m̃𝜃, m̃0, … , m̃d from the previous estimation steps,
we can replace the error terms 𝜀t by the approximations

�̃�t = Yt,T − m̃𝜃(t) − m̃0

( t
T

)
−

d∑
𝑗=1

m̃𝑗

(
X𝑗

t
)

(17)

in the maximum likelihood estimation. The log-likelihood then becomes

l̃T(𝜙) = −
T∑

t=p+1
(�̃�t − �̃�t(𝜙))2 (18)

with �̃�t(𝜙) =
∑p

i=1 𝜙i�̃�t−i. Our estimator �̃� of the true parameter values 𝜙∗ is now defined as

�̃� = argmax
𝜙∈Φ

l̃T(𝜙). (19)

4 ASYMPTOTICS

In this section, we analyze the asymptotic properties of our estimators. The first subsection
lists the assumptions required for our analysis. The following subsections describe the main
asymptotic results, with each subsection dealing with a separate step of our estimation procedure.

4.1 Assumptions
To derive the asymptotic properties of the estimators m̃𝜃, m̃0, … , m̃d, the following assumptions
are needed:

(H1) The process {(Xt, 𝜀t) ∶ t = 1, … ,T} is strictly stationary and strongly mixing with mixing
coefficients 𝛼 satisfying 𝛼(k) ≤ ak for some 0 < a < 1.

(H2) The variables Xt have compact support, which w.l.o.g. equals [0, 1]d. The density p of Xt
and the densities p(0,l) of (Xt,Xt + l), l = 1, 2, … , are uniformly bounded. Furthermore, p is
bounded away from zero on [0, 1]d.

(H3) The functions m0 and mj ( j = 1, … , d) are twice continuously differentiable with
Lipschitz-continuous second derivatives. The first partial derivatives of p exist and are
continuous.

(H4) The kernel K is bounded, symmetric about zero and has compact support [ −C1,C1].
Moreover, it fulfills the Lipschitz condition that there exists a positive constant L with|K(u) − K(v)| ≤ L|u − v|.

(H5) There exist a real constant C and a natural number l∗ such that E[|𝜀t|𝜌 | Xt] ≤ C for some
𝜌 >

8
3

and E[|𝜀t𝜀t+l| | Xt,Xt+l] ≤ C for all l ≥ l∗.
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(H6) The bandwidth h satisfies either of the following:

(a) T
1
5 h → cb for some constant cb > 0.

(b) Tλh → cb for some constant cb > 0 and some λ ∈
(

1
4
,

1
3

)
.

The above assumptions are very similar to the standard conditions for smooth backfitting estima-
tors to be found, for example, in the works of Mammen et al. (1999), Mammen and Park (2006),
or Yu, Mammen, and Park (2011). Note that we do not necessarily require exponentially decay-
ing mixing rates, as assumed in (H1). These could alternatively be replaced by sufficiently high
polynomial rates. We nevertheless make the stronger assumption (H1) to keep the notation and
structure of the proofs as clear as possible. In (H6), we impose two alternative conditions on the
bandwidth h. In (H6a), h is assumed to be of the order T−1/5, which is optimal for estimating the
additive component functions m0, … ,md. In (H6b), we assume h to be of the order T−λ with
some λ ∈

(
1
4
,

1
3

)
and, thus, undersmooth the backfitting estimators of m0, … ,md. Undersmooth-

ing is needed to estimate the AR coefficients in the error term. It makes sure that the bias parts
of the backfitting estimators can be asymptotically neglected and do not influence the limit dis-
tribution of the AR parameter estimators. Assumption (H6b) parallels standard undersmoothing
conditions imposed in the context of semiparametric estimation problems.

In order to show that the estimators of the AR parameters are consistent and asymptotically
normal, we additionally require the following assumptions:

(H7) The parameter space Φ is a compact subset of {𝜙 ∈ Rp | 1 − 𝜙1z − · · · − 𝜙pzp ≠ 0 for all
complex z with |z| ≤ 1 and 𝜙p ≠ 0}. The true parameter vector 𝜙∗ = (𝜙∗

1, … , 𝜙∗
p) is an

interior point of Φ.
(H8) E[𝜀4+𝛿

t ] <∞, for some 𝛿 > 0.
(H9) There exist a real constant C and a natural number l∗such that E[|𝜀t| | Xt+k] ≤ C and

E[|𝜀t𝜀t+l| | Xt+k,Xt+l] ≤ C for all l with |l| ≥ l∗ and k = −p, … , p.

The compactness assumption in (H7) is required for the proof of consistency. (H8) and (H9) are
technical assumptions needed to show asymptotic normality.

4.2 Asymptotics for m̃𝜽

We start by considering the asymptotic behavior of the estimator m̃𝜃 . The next theorem shows
that

√
T
𝜃
(m̃𝜃(t) − m𝜃(t)) is asymptotically normal for each fixed time point t.

Theorem 1. Let (H1) and (H3) be fulfilled and assume that E|𝜀t|𝜌 < ∞ for some 𝜌 > 2. Then,√
T
𝜃
(m̃𝜃(t) − m𝜃(t))

d
−→N(0,V𝜃)

for any t = 1, … ,T, where V𝜃 =
∑∞

k=−∞ Cov(W0,Wk𝜃) with Wt = Yt,T − m𝜃(t) − m0

(
t
T

)
=∑d

𝑗=1 m𝑗(X𝑗
t ) + 𝜀t.

As m̃𝜃 and m𝜃 are periodic and the period 𝜃 is a fixed constant that does not depend on the sample
size T, Theorem 1 immediately implies that

sup
t=1,… ,T

|m̃𝜃(t) − m𝜃(t)| = sup
t=1,… ,𝜃

|m̃𝜃(t) − m𝜃(t)| = Op

(√
𝜃

T

)
= Op

(
1√
T

)
.
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The proof of Theorem 1 is straightforward: We have

m̃𝜃(t) − m𝜃(t) =
1

Kt𝜃 ,T

Kt𝜃 ,T∑
k=1

m0

(
t𝜃 + (k − 1)𝜃

T

)
+ 1

Kt𝜃 ,T

Kt𝜃 ,T∑
k=1

Wt𝜃+(k−1)𝜃

=∶ (A) + (B).

The term (A) approximates the integral ∫ 1
0 m0(u)du. It is easily seen that the convergence rate is

O
(
𝜃

T

)
. As ∫ 1

0 m0(u)du = 0 by the normalization in (4), we obtain that (A) is of the order O
(
𝜃

T

)
and can thus be asymptotically neglected. Noting that {Wt} is mixing by (H1) and has mean zero
by our normalization, we can now apply a central limit theorem for mixing variables to the term
(B) to get the normality result of Theorem 1.

The statement of Theorem 1 is derived under the assumption that the period 𝜃 is a fixed con-
stant that does not depend on the sample size T. Heuristically speaking, we thus assume that 𝜃
is small compared with T. To better take into account the case where 𝜃 is not so small in com-
parison with T, we could allow 𝜃 to grow with T, that is, 𝜃 = 𝜃T. Because m̃𝜃(t) is nothing else
than an empirical average of the observations Yt𝜃 ,T ,Yt𝜃+𝜃,T ,Yt𝜃+2𝜃,T , … , the effective sample size
for estimating m𝜃(t) is T∕𝜃. This implies that, for each fixed t, m̃𝜃(t) converges to m𝜃(t) at the rate
Op(

√
𝜃∕T). The faster 𝜃 = 𝜃T grows with T, the slower this rate becomes. As regards to our theory,

we can allow 𝜃 = 𝜃T to grow with the sample size T as long as it does not diverge too quickly. In
particular, our main theorems (Theorems 2, 3, and 4) and Corollary 1 remain to hold true as long
as 𝜃T does not grow too fast. In the sequel, we stick to the assumption that 𝜃 is a fixed constant in
order to keep the technical arguments as clear as possible.

4.3 Asymptotics for m̃𝟎, … , m̃d

The main result of this subsection characterizes the limiting behavior of the smooth backfitting
estimators m̃0, … , m̃d. It shows that the estimators converge uniformly to the true component
functions at the one-dimensional nonparametric rate no matter how large the dimension d of the
regressors. Moreover, it characterizes the asymptotic distribution of the estimators.

Theorem 2. Suppose that conditions (H1)–(H5) hold.

(a) Assume that the bandwidth h satisfies (H6a) or (H6b). Then, for Ih = [2C1h, 1 − 2C1h]
and Ic

h = [0, 2C1h) ∪ (1 − 2C1h, 1],

sup
x𝑗∈Ih

||m̃𝑗(x𝑗) − m𝑗(x𝑗)|| = Op

(√
log T

Th

)
(20)

sup
x𝑗∈Ic

h

||m̃𝑗(x𝑗) − m𝑗(x𝑗)|| = Op(h) (21)

for all j = 0, … , d.
(b) Assume that the bandwidth h satisfies (H6a). Then, for any x0, … , xd ∈ (0, 1),

T
2
5

⎡⎢⎢⎣
m̃0(x0) − m0(x0)

⋮
m̃d(xd) − md(xd)

⎤⎥⎥⎦
d

−→N (B(x),V(x))

with the bias term B(x) = [c2
b(𝛽0(x0) − 𝛾0), … , c2

b(𝛽d(xd) − 𝛾d)]′ and the covariance
matrix V(x) = diag(v0(x0), … , vd(xd)). Here, v0(x0) = c−1

b cK
∑∞

l=−∞ 𝛾𝜀(l) and v𝑗(x𝑗) =
c−1

b cK𝜎
2
𝑗
(x𝑗)∕p𝑗(x𝑗) for j = 1, … , d with 𝛾𝜀(l) = Cov(𝜀t, 𝜀t + l), 𝜎2

𝑗
(x𝑗) = Var(𝜀t | X𝑗

t = x𝑗)
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and the constants cb = limT→∞T1∕5h and cK = ∫ K2(u)du. Furthermore, the functions 𝛽 j are
the components of the L2(q)-projection of the function 𝛽 defined in Lemma 3 in Appendix A
onto the space of additive functions satisfying ∫ 𝛽𝑗(x𝑗)p𝑗(x𝑗)dx𝑗 = 0. Finally, the constants 𝛾 j

can be characterized by the equation ∫ 1
0 𝛼T,𝑗(x𝑗)p̂𝑗(x𝑗)dx𝑗 = h2𝛾𝑗 + op(h2) for j = 0, … , d,

with 𝛼T,j also given in Lemma 3 in Appendix A.

As described in Section 3.2, rescaled time t
T

behaves similarly to an additional uniformly dis-
tributed regressor that is independent of the other regressors. This consideration allows us to
derive the above result by extending the proving strategy of Mammen et al. (1999). The details are
given in Appendix B.

4.4 Asymptotics for the AR parameter estimators
We finally establish the asymptotic properties of our estimator �̃� of the AR parameters 𝜙∗. The
technical details can be found in Appendix C. The first theorem shows that �̃� is consistent.

Theorem 3. Suppose that the bandwidth h satisfies (H6a) or (H6b). In addition, let assump-
tions (H1)–(H5) and (H7) be fulfilled. Then, �̃� is a consistent estimator of 𝜙∗, that is, �̃�

P
−→𝜙∗.

The central result of our theory specifies the limiting distribution of �̃�.

Theorem 4. Suppose that the bandwidth h satisfies (H6b) and let assumptions (H1)–(H5)
together with (H7)–(H9) be fulfilled. Then, it holds that√

T(�̃� − 𝜙∗)
d

−→N(0,V∗)

with
V∗ = Γ−1

p (W + Ω)Γ−1
p .

Here, Γp is the autocovariance matrix of the AR(p) process {𝜀t}, that is, Γp = (𝛾(i − j))i, j= 1,… , p
with 𝛾(i − 𝑗) = E[𝜀0𝜀i−𝑗]. Moreover, W = (E[𝜂2

0𝜀−i𝜀−𝑗])i,𝑗=1,… ,p and the matrix Ω is defined in
Equation (C15) in Appendix C.

Consider for a moment the case in which the functions m𝜃 and m0, … ,md are known. In this case,
we can use the “oracle” estimator �̂� defined in (15) to estimate the AR parameters 𝜙∗. Standard
theory tells us that �̂� is asymptotically normal with asymptotic variance Γ−1

p WΓ−1
p . Theorem 4

thus shows that, in general, the limiting distribution of our estimator �̃� differs from that of the
oracle estimator. Note that this difference does not merely result from the fact that the functions
m0, … ,md are nonparametric. Even if they are parametric, �̃� will in general have a different
distribution than the oracle estimator �̂�.

Even though different in general, the asymptotic distributions of �̃� and �̂� are the same in a
wide range of cases. This oracle-type result is stated in the following corollary.

Corollary 1. Suppose that all the assumptions of Theorem 4 are fulfilled and thatE[𝜀t | Xt+k] =
0 for all k = −p, … , p. Then,√

T(�̃� − 𝜙∗)
d

−→N
(
0,Γ−1

p WΓ−1
p
)
.

Corollary 1 follows directly from the proof of Theorem 4: Inspecting the functions defined in
Lemma 4 in Appendix C and realizing that they are constantly zero under the assumptions of
the corollary, the matrix Ω is immediately seen to be equal to zero as well. The corollary shows
that the oracle result holds under fairly mild conditions on the dependence structure between
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Xt and 𝜀t, in particular, under much weaker conditions than independence of the processes {Xt}
and {𝜀t}. To give an example where the conditions of the corollary are satisfied but where the
processes {Xt} and {𝜀t} are not independent, consider the following. Let the AR residuals be given
by 𝜀t =

∑p
i=1 𝜙

∗
i 𝜀t−i + 𝜂t with 𝜂t = 𝜎(Xt)𝜉t, where 𝜎 is a continuous volatility function and {𝜉t}

is a process of zero-mean i.i.d. variables that is independent of {Xt}. A simple argument shows
that E[𝜀t | {Xt}] = 0 in this case, that is, the assumptions of the corollary are satisfied. Moreover,
it is easily seen that the processes {Xt} and {𝜀t} are not independent given that the function 𝜎 is
nonconstant.

Note that our theory re-establishes the oracle result derived in the simpler setup without
stochastic covariates, that is, in the model

Yt,T = m𝜃(t) + m0

( t
T

)
+ 𝜀t for t = 1, … ,T (22)

with E[𝜀t] = 0. In this case, the periodic component can be estimated as described in Section 3.1.
Moreover, we can use a Nadaraya–Watson smoother of the form (14) to approximate the trend
component m0. A vastly simplified version of the proof for Theorem 4 shows that the limiting
distribution of the AR parameter estimators is identical to that of the oracle estimators in this
setting. In particular, the stochastic higher-order expansion derived in Lemma 4 is not required
any more. The arguments of the much simpler Lemma 5 in Appendix C are sufficient to derive the
result. To understand the main technical reasons why the argument simplifies so substantially,
we refer the reader to the remarks given after the proof of Lemma 5.

The normality results of Theorem 4 and Corollary 1 enable us to calculate confidence bands
for the AR parameter estimators and to conduct inference based on these. To do so, we need a
consistent estimator of the asymptotic variance of �̃�. Whereas such an estimator is easily obtained
under the conditions of Corollary 1, it is not at all trivial to derive a consistent estimator of V∗ in
Theorem 4. This is due to the very complicated structure of the matrixΩ, which involves functions
obtained from a higher-order expansion of the stochastic part of the backfitting estimators (see
Theorem 5 in Appendix B). To circumvent these difficulties, one may try to set up a bootstrap
approach to estimate confidence bands and to do testing. The normality result of Theorem 4 could
be used as a starting point to derive consistency results for such a bootstrap procedure. However,
this is beyond the scope of this paper and a substantial project in itself.

5 APPLICATION

In this section, we apply our estimation procedure to a set of monthly temperature and ozone
data from the Faraday/Vernadsky research station on the Antarctic Peninsula. The data can be
found online as supporting information. Alternatively, it is available on request from the British
Antarctic Survey, Cambridge. A strong warming trend has been identified on the peninsula over
the past 50 years. In particular, the monthly mean temperatures at Faraday station have consider-
ably increased during this time, as pointed out, for example, by Turner, King, Lachlan-Cope, and
Jones (2002) and Turner et al. (2005).

5.1 Modeling approach
We closely follow the analysis of Hughes et al. (2007) as our model can be seen as a semiparametric
extension to their approach. According to Hughes et al. (2007), the rise of the mean monthly
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temperature is mostly due to an increase in the minimum monthly temperature. They argued that,
to understand and quantify the warming on the peninsula, an appropriate statistical model of the
minimum temperature is called for. Following their lead, we focus on modeling the minimum
temperature and consider stratospheric ozone as a potential explanatory variable.

The data used in our analysis are plotted in Figure 1. The upper panel contains the monthly
minimum near-surface temperatures at Faraday station from September 1957 to December 2004,
whereas the lower panel shows the monthly level of stratospheric ozone concentration measured
in Dobson units over the same period. For more information on the data, consult the work of
Hughes et al. (2007), where a detailed description of them can be found.

Hughes et al. (2007) proposed a parametric model with a linear trend and a parametrically
specified periodic component with a period of 12 months to fit the temperature and ozone data.
Their baseline model is given by the equation

Yt = a0 + a1 sin
(2𝜋

12
t
)
+ a2 cos

(2𝜋
12

t
)
+ a3t + 𝜀t, (23)

where Yt denotes the minimum monthly temperature and a = (a0, … , a3) is a vector of
parameters. In addition, they considered the extended model

Yt = a0 + a1 sin
(2𝜋

12
t
)
+ a2 cos

(2𝜋
12

t
)
+ a3t + a4Xt−1 + 𝜀t, (24)
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FIGURE 1 The upper panel shows the monthly minimum near-surface temperatures (in degree Celsius) and
the lower one shows the monthly stratospheric ozone concentrations (in Dobson units) at Faraday station
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where the covariate Xt− 1, denoting the lagged detrended and deseasonalized ozone concentra-
tion, enters linearly. In their analysis, they found a strong linear upward trend in the minimum
monthly temperature. Moreover, they observed considerable autocorrelation in the residuals 𝜀t
and proposed an AR process to model them. Using an order selection criterion, they found an
AR(1) model to be most suitable, which fits nicely with the preference for AR(1) errors when
using discrete time series to model climate data, as mentioned in Mudelsee (2010).

We now introduce a framework that can be regarded as a semiparametric extension to the
parametric models (23) and (24). Our baseline model is given by

Yt,T = m𝜃(t) + m0

( t
T

)
+ 𝜀t for t = 1, … ,T, (25)

where Yt,T are minimum monthly temperatures, m𝜃 is a seasonal component, and m0 is a non-
parametric time trend. We additionally consider an extended version of (25) having the form

Yt,T = m𝜃(t) + m0

( t
T

)
+ m1(Xt−1) + 𝜀t for t = 1, … ,T, (26)

where, as before, the variables Xt− 1 denote lagged monthly stratospheric ozone concentration
levels that have been detrended and deseasonalized. The additive functions m𝜃 , m0, and m1 in
the above two models are normalized as described in (4). Following the work of Hughes et al.
(2007), we assume the variables 𝜀t to have an AR(1) structure and allow for the minimum monthly
temperature to have a 12-month cycle by setting 𝜃 = 12.

Before giving our estimates, we provide the preferred fits of the models (23) and (24) given in
the work of Hughes et al. (2007) in order to compare our estimates to theirs. Their models are fitted
using observations up until and including December 2003. For the model (23), their preferred
fit is

Yt = 6.25 sin
(2𝜋

12
t
)
+ 6.95 cos

(2𝜋
12

t
)
+ 0.0105t + 𝜀t (27)

with 𝜀t = 0.566𝜀t− 1 + 𝜂t and 𝜂t distributed as conv GEV(−0.109,−5.71,3.65), where “conv GEV”
stands for converse generalized extreme value. A conv GEV(𝛾, 𝜇, 𝜎) random variable Z has the
distribution function P(Z ≤ z) = 1 − exp{[1 + 𝛾

𝜎
(𝜇 − z)]−

1
𝛾 }. Their preferred fit for the model in

(24) is

Yt = 6.61 sin
(2𝜋

12
t
)
+ 7.22 cos

(2𝜋
12

t
)
+ 0.0091t − 0.0267Xt−1 + 𝜀t (28)

with 𝜀t = 0.562𝜀t− 1 + 𝜂t and 𝜂t a conv GEV(−0.0969,−5.67,3.59) random variable.

5.2 Implementation
We estimate the additive component functions together with the AR parameter in our models (25)
and (26) by the three-step procedure outlined in Section 3. Note that, in the simpler model (25),
the trend function m0 is estimated by a Nadaraya–Watson smoother in the second step of the pro-
cedure. To maintain comparability with the work of Hughes et al. (2007), we also use the observed
data up until December 2003 for the estimation. To compute the estimators of the additive func-
tions m0 and m1 and of the AR parameter, we employ an Epanechnikov kernel and choose the
bandwidths by the following simple plug-in rule:

h∗
𝑗 = T−1∕5

(
cV ∫ �̌�2

𝑗
(x𝑗)dx𝑗

4 ∫ 𝛽2
𝑗
(x𝑗)p̌𝑗(x𝑗)dx𝑗

)1∕5

, (29)
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where

𝛽𝑗(x𝑗) = cB

(
b̌𝑗(x𝑗) − ∫ b̌𝑗(x𝑗)p̌𝑗(x𝑗)dx𝑗

)
with

b̌𝑗(x𝑗) = m̌′
𝑗(x𝑗)

p̌′
𝑗
(x𝑗)

p̌𝑗(x𝑗)
+ 1

2
m̌′′
𝑗 (x𝑗)

for j ∈ {0, 1}. Here, �̌�2
𝑗
, p̌𝑗 , p̌′

𝑗
, m̌′

𝑗
, and m̌′′

𝑗
are initial estimators that are computed with a pilot

bandwidth h. Specifically, p̌𝑗(x𝑗) = T−1 ∑T
t=1 Kh(X𝑗

t − x𝑗) is a kernel estimator of the marginal
density pj and p̌′

𝑗
(x𝑗) is its derivative. Moreover, m̌′

𝑗
(x𝑗) and m̌′′

𝑗
(x𝑗) are estimators of the first and

second derivatives m′
𝑗
(x𝑗) and m′′

𝑗
(x𝑗), respectively. They are obtained from a local quadratic fit

of m̌𝑗 , as described on p. 1271 of the work of Mammen and Park (2005), where m̌𝑗 is an ini-
tial backfitting estimator of the component function mj. Furthermore, �̌�2

0 is an estimator of the
long-run error variance 𝜈2

0 , which has the form 𝜈2
0 = E[𝜂2

t ]∕(1 − 𝜙∗)2 given the AR(1) error
structure 𝜀t = 𝜙∗𝜀t− 1 + 𝜂t. To obtain �̌�2

0 , we fit an AR(1) model to the initial residuals �̌�t =
Yt − m̃𝜃(t) − m̌0(t∕T) − m̌1(Xt−1) and compute estimates of 𝜙∗ and E[𝜂2

t ]. The term �̌�2
1 is an estima-

tor of the conditional error variance E[𝜀2
t | Xt−1 = · ]. For simplicity, we suppose that the errors

𝜀t are homoskedastic, implying that E[𝜀2
t | Xt−1 = · ] is equal to the unconditional short-run error

variance E[𝜀2
t ]. This allows us to work with the simple estimator �̌�2

1 = T−1 ∑T
t=1 �̌�

2
t . All initial esti-

mators are computed using an Epanechnikov kernel and the starting bandwidth h = 0.1. The
constants cV and cB used in (29) are given by cV = ∫ K2(u)du and cB = ∫ u2K(u)du. For the
Epanechnikov kernel, they amount to cV = 3∕5 and cB = 1∕5.

The plug-in bandwidth h∗
𝑗

can be regarded as an estimator of the optimal bandwidth which
minimizes the (asymptotic) integrated mean squared error (MSE) of the backfitting estimator
m̃𝑗 . To compute it, we essentially have to estimate the asymptotic variance and bias expressions
appearing in the normality result of Theorem 2. To do so, we make use of the following: (a) natural
estimators of the terms 𝛾 j appearing in the asymptotic bias are given by 0 and (b) the expression
𝛽𝑗(x𝑗) is an estimator of the bias component 𝛽 j(xj). In general, the terms 𝛽 j(xj) have a very compli-
cated form. Only if d = 1 (as in our application) or if the d > 1 random regressors X1

t , … ,Xd
t are

independent from each other, do we obtain 𝛽𝑗(x𝑗) = cB(b𝑗(x𝑗) − ∫ b𝑗(x𝑗)p𝑗(x𝑗)dx𝑗) with the simple
formula b𝑗(x𝑗) = m′

𝑗
(x𝑗)p′

𝑗
(x𝑗)∕p𝑗(x𝑗) + m′′

𝑗
(x𝑗)∕2. Hence, under the assumption of independent

regressors, our plug-in rule can be easily extended to the case d > 1. In practice, this extended
plug-in rule can be expected to work as long as the regressors are only moderately dependent,
that is, as long as the independence assumption is not too far from the truth. Otherwise, more
sophisticated methods are needed to approximate the terms 𝛽 j(xj).

The proposed plug-in procedure is of course only a heuristic rule. We do not provide any theory
for automated bandwidth selection as this would be an entire project in itself. Indeed, to the best
of our knowledge, bandwidth selection for smooth backfitting estimators in the dependent data
case is still an open problem. Some theory for the i.i.d. case is provided in the work of Mammen
and Park (2005). However, their results have not been extended to the dependent data case so far.
Note that we have not used a cross-validation procedure to select the bandwidths for the following
reason. As shown, for example, in the works of Altman (1990), Hart (1991), Herrmann, Gasser,
and Kneip (1992), and Hart (1994), standard cross-validation tends to perform poorly when used
to estimate the optimal bandwidth in the simple fixed design setting Yt,T = m( t

T
) + 𝜀t with corre-

lated errors. In our setting, analogous difficulties are to be expected when selecting the bandwidth
in time direction.
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5.3 Estimation results
The estimate of the periodic component m𝜃 is given by the circles in Figure 2. The vertical dashed
lines illustrate the estimated 95% confidence intervals. Using the dotted line, we have superim-
posed the estimated periodic function from the parametric model (28). Two differences between
our periodic component estimate and the parametric estimate given in (28) become apparent
immediately. Firstly, our estimate achieves its minimum in the southern hemisphere winter
month of August, whereas the minimum is in July/August when the parametric model is used.
Secondly, in contrast to its parametric counterpart, our estimate is not symmetric: The fall in the
minimum temperature from January to August is more gradual than the increase from August
until January. Interestingly, the median monthly minimum temperature also follows this pattern,
as can be seen in the boxplot of the monthly minimum temperatures provided in figure 1(b) of
the work of Hughes et al. (2007).

Figure 3 shows the smooth backfitting estimates of the additive functions m0 and m1 in
model (26), along with their corresponding estimated 95% pointwise confidence bands. To com-
pute them, we have used the bandwidths (h∗

0, h
∗
1) = (0.15, 0.14), which were chosen as described

in Section 5.2. The dashed lines in Figure 3 are fits from the parametric model (28). As the
Nadaraya–Watson estimate of m0 in the simpler model (25) is very similar to the estimate in (26),
we do not plot it separately. From the shape of m̃0 together with the rather tight 95% confidence
band in the left-hand panel of Figure 3, there seems to be a strongly nonlinear upward moving
trend in the minimum monthly temperature. Not only is the linear parametric trend in (28) not
capable of capturing the nonlinear pattern, we can also see that it underestimates the overall
trend increase in the monthly minimum temperature over the entire estimation period. However,
toward the end of the sample, the fits are very similar. The estimate m̃1 in the right-hand panel
of Figure 3 suggests that the lagged ozone concentration level has a negative effect on the mini-
mum monthly temperature. Although the effect appears to be nonlinear again, the deviation from
linearity does not seem to be as severe as for m̃0.

From the third step of our estimation procedure, we obtain estimated AR parameters of
0.56 and 0.57 for the models (25) and (26), respectively. These are essentially identical to the

−
15

−
5

0
5

10
15

Months

E
st

im
at

ed
 s

ea
so

na
lit

y

− −
−

−

−

−

−

− −

−

−

−− −
−

−

−

−

−

−
−

−

−

−

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

m~ θ  (demeaned)
Parametric Specification

FIGURE 2 The circles represent the demeaned estimate of the seasonal component m𝜃 of models (25) and (26)
along with (dashed vertical lines) the estimated 95% pointwise confidence intervals. The dotted line represents
the function 6.61 sin

(
2𝜋
12

t
)
+ 7.22 cos

(
2𝜋
12

t
)

, which is the estimate of the seasonal component from the fitted
parametric model in (28) obtained by Hughes et al. (2007)
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FIGURE 3 Estimation results for model (26). The solid lines are the smooth backfitting estimates m̃0 and m̃1,
and the dotted lines are pointwise 95% confidence bands. The dashed lines are the (centered) estimates from the
fitted parametric model in (28) obtained by Hughes et al. (2007)

estimates obtained by Hughes et al. (2007) in the parametric models (27) and (28). As discussed
in Section 4.4, it is straightforward to calculate confidence intervals for the parameter estimate in
the simple model (25), whereas this is extremely involved in the extended model (26) if we are
not willing to make the assumptions of Corollary 1. Here, we shall be content with giving the
95% confidence band in the simple model (25), which is [0.50, 0.64]. Comparing this to the cor-
responding estimated band of [0.51, 0.62] for the simple parametric model (27), we see that the
parameter uncertainty is fairly similar, although the estimated 95% confidence band for the para-
metric model (27) is slightly narrower and asymmetric due to the assumed conv GEV innovations.
To summarize, it seems like the residual process displays significant positive persistence, which,
as pointed out by Mudelsee (2010), is a common phenomenon for climate data.

Finally, we compare our semiparametric models with those of Hughes et al. (2007) in terms
of forecasting ability. To do so, we repeat the forecasting exercise from the work of Hughes et al.
(2007), that is, we compute the one-step-ahead forecasts of the minimum monthly temperatures
for the twelve months from January to December 2004. The one-step-ahead forecast for time point
t0 + 1 is obtained by estimating the model using observations at t = 1, … , t0 and constantly
extrapolating the estimated trend function m̃0 into the future. As it is unclear what the theo-
retically optimal smoothing parameter in the forecasting context would be, we have computed
the forecasts for bandwidths h on a grid spanning a wide range of values from 0.05 to 1 in each
direction.

We first compare the forecasting performance of our simple model (25), the corresponding
parametric model (23), and the intermediate model

Yt = m𝜃(t) + bt + 𝜀t, (30)

where the seasonality is modeled as in our approach but the trend is linear as in the models of
Hughes et al. (2007). Note that in (30), the model constant is absorbed into the seasonal com-
ponent m𝜃 . For all three models, we take the errors to follow an AR(1) process. For comparison
purposes, all three models are estimated using minimum temperature data from September 1957
onwards. The parameters a = (a0, … , a3) in model (23) are estimated by least squares. For
the intermediate model (30), the seasonal component is estimated as in our procedure and the
parameter b is obtained from a least squares fit. Finally, our simple model (25) is estimated using a
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local constant smoother with a bandwidth varying over the grid mentioned above. In all the above
models, an estimator of the AR(1) parameter in the error term is obtained from a least squares fit
to the estimated residuals.

Table 1 reports the estimated MSE of the forecasts for the models considered. A graphical
illustration is provided in Figure 4. As one can see, our model (25) performs better in terms of MSE
than its two competitors (23) and (30) for all bandwidths h considered. The largest reduction in
MSE occurs when moving from model (23) to (30), that is, when using our estimate of the periodic
component instead of the one considered in (23). The MSE can be seen to further reduce when
moving from the intermediate model (30) to our model (25), that is, when replacing the linear
trend by a nonparametric trend. The additional gain, however, is much smaller. These results are
quite intuitive: The estimated periodic component exhibits a strong variation within a one-year
cycle, whereas the estimated trend varies comparatively little over short time periods. Hence, for
short-term forecasts, the variation in the trend is much less important than the variation in the
seasonal component. Moreover, the parametric and nonparametric fits of the trend function are
very close toward the end of the sample. This suggests that, for the data sample at hand, much
more can be gained in terms of forecasting by improving the estimate of the seasonal component
than the trend estimate.

In addition to the analysis above, we have performed the same forecasting exercise for our
model (26), which includes ozone as an additional predictor. We denote the bandwidth for esti-
mating mj by hj and consider bandwidths hj on a grid ranging from 0.05 to 1 for j = 0, 1.
For all combinations of bandwidths (h0, h1) considered, the MSE lies between 11.55 and 9.32.

TABLE 1 Mean squared error (MSE) of forecasts for models (23), (30), and (25) for various bandwidths h

Model (23) Model (30) Model (25) with bandwidth:
h= 0.1 h= 0.2 h= 0.3 h= 0.4 h= 0.5 h= 0.6 h= 0.7 h= 0.8 h= 0.9 h= 1

13.11 10.46 9.75 9.81 9.54 9.48 9.42 9.34 9.31 9.34 9.38 9.45

Note. In the work of Hughes et al. (2007), the best model of type (23) is estimated via a maximum likelihood procedure and an
extreme value distribution assumption on a sample starting in January 1951 with a reported MSE of 11.09.
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The MSE value reported in the work of Hughes et al. (2007) for the corresponding parametric
model (28) with an ozone component amounts to 10.14. The MSE produced by our semiparamet-
ric model (26) lies below the reference value 10.14 for all bandwidth combinations with h1 > 0.1.
Hence, we can improve on the forecasting performance of the parametric model (28) as long as we
do not strongly undersmooth in the direction of ozone. The best MSE for model (26) is obtained
for the bandwidth h1 = 1, that is, when ozone is essentially smoothed out. Setting h1 = 1 and
varying the bandwidth h0 in time direction over the grid from 0.05 to 1, the MSE varies from 9.78
to 9.32. Comparing these MSE values to those for the simpler model (25) with a trend compo-
nent only, there appears to be no further gain from including ozone as a predictor. Thus, it seems
that lagged ozone does not help in terms of forecasting, in contrast to the results in the work of
Hughes et al. (2007). Finally, one may try to improve the forecast performance of our model (26)
by using a local linear pilot smoother in time direction, as discussed at the end of Section 3.2.
However, for the data sample at hand, there is no gain from doing so, the best prediction MSE
over the grid of bandwidths considered being 9.63.

6 EXTENSIONS

Our theory and methods can be extended in various directions. In what follows, we discuss some
of them.

6.1 Alternative error structures
As already mentioned in Section 3.3, our theoretical arguments can be generalized to work for
other error structures. An important example is the case in which we suspect the residuals to be
heteroskedastic and model them via an ARCH(p) process. Going along the lines of the proofs for
Theorems 3 and 4, the ARCH parameter estimators can be shown to be consistent and asymp-
totically normal. The only difference to the AR case is that the conditional likelihood has a more
complicated form, making it more tedious to derive the expansion of the first derivative of the
likelihood function in the normality proof.

Our proving strategy may also be applied to ARMA( p, q) and GARCH( p, q) residuals. This is
most easily seen for a causal and invertible ARMA(1, 1) process {𝜀t}, which satisfies the equation

𝜀t − 𝜙∗𝜀t−1 = 𝜂t + 𝜃∗𝜂t−1

for some white-noise residuals 𝜂t. In this case, the conditional likelihood can be written as

lT(𝜙, 𝜃) = −
T∑

t=2
(𝜀t − 𝜀t(𝜙, 𝜃))2 with 𝜀t(𝜙, 𝜃) =

t−1∑
k=1

(−𝜃)k−1(𝜙 + 𝜃)𝜀t−k,

which has a very similar structure to the likelihood function of the AR(p) case. The only notable
difference is that the sum over k in the definition of 𝜀t(𝜙, 𝜃) now has t − 1 elements rather than
only a fixed number p. As the elements of the sum are weighted by the coefficients ( − 𝜃)k− 1(𝜙+ 𝜃)
that decay exponentially fast to zero, this does however not cause any major problems in the
proofs. In particular, we can truncate the sum at min{t − 1,C log T} for a sufficiently large C, the
remainder being asymptotically negligible. After this truncation, the arguments of the AR( p) case
apply more or less unchanged.

In the general ARMA( p, q) setup, the structure of the likelihood function becomes much more
complicated. It is thus convenient to base the estimation of the parameters on a criterion function
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that is a bit simpler to handle. In particular, consider a causal and invertible ARMA( p, q) process
{𝜀t} of the form

𝜀t −
p∑

i=1
𝜙∗

i 𝜀t−i = 𝜂t +
q∑
𝑗=1
𝜃∗𝑗 𝜂t−𝑗

and write 𝜙∗ = (𝜙∗
1, … , 𝜙∗

p) and 𝜃∗ = (𝜃∗1 , … , 𝜃∗q). As 1 +
∑q
𝑗=1 𝜃

∗
𝑗

z𝑗 ≠ 0 for all complex |z| ≤ 1,
there exist coefficients 𝜌∗k = 𝜌k(𝜃∗) with(

1 +
q∑
𝑗=1
𝜃∗𝑗 z𝑗

)−1

=
∞∑

k=0
𝜌∗kzk

for all |z| ≤ 1. Using this, we obtain that
∞∑

k=0
𝜌∗k

(
𝜀t−k −

p∑
i=1
𝜙∗

i 𝜀t−k−i

)
= 𝜂t.

Truncating the infinite sum on the left-hand side, we now define the expressions

𝜂t(𝜙, 𝜃) =
t−p−1∑

k=0
𝜌k(𝜃)

(
𝜀t−k −

p∑
i=1
𝜙i𝜀t−k−i

)
and estimate the ARMA coefficients 𝜙∗ and 𝜃∗ by minimizing the least squares criterion

lT(𝜙, 𝜃) =
T∑

t=p+1
𝜂t(𝜙, 𝜃)2.

This criterion function again has a very similar structure to that of the AR( p) setup. In particular,
setting 𝜌0(𝜃) = 1 and 𝜌k(𝜃) = 0 for k > 0 yields the conditional likelihood of the AR( p) case.
As the coefficients 𝜌k(𝜃) (as well as their derivatives with respect to 𝜃) decay exponentially fast to
zero, a truncation argument as in the ARMA(1,1) case allows us to adapt the proving strategy of
Theorems 3 and 4 to the setup at hand.

6.2 A locally stationary version of our model
Our model decomposes the time series observations Yt,T into the seasonal component m𝜃(t),
the time trend component m0( t

T
), and the stationary stochastic component

∑d
𝑗=1 m𝑗(X𝑗

t ) + 𝜀t.
Whether the stationarity of the stochastic component is a reasonable assumption of course
depends on the application context. An interesting extension of our framework is to replace the
stationary by a locally stationary stochastic component. This results in the model equation

Yt,T = m𝜃(t) + m0

( t
T

)
+

d∑
𝑗=1

m𝑗

( t
T
,X𝑗

t,T

)
+ 𝜀t,T , (31)

where m𝜃 and m0 are defined as before and mj are time-varying nonparametric component func-
tions. In this very general model framework, the covariate process {Xt,T ∶ t = 1, … ,T} may be
allowed to be locally stationary (rather than strictly stationary) and {𝜀t,T ∶ t = 1, … ,T} may be
a time-varying AR process of the form

𝜀t,T =
p∑

i=1
𝜙∗

i

( t
T

)
𝜀t−i,T + 𝜂t,T with 𝜂t,T = 𝜎

( t
T
,Xt,T

)
𝜉t, (32)
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where 𝜎 is a time-varying volatility function and 𝜉t are i.i.d. innovations. The locally stationary
model (31) (without a periodic component m𝜃) was studied by Vogt (2012). There, theory for
smooth backfitting estimators of the time-varying functions mj was developed. The results from
the work of Vogt (2012) could be used as a starting point to generalize our theoretical results to
models (31) and (32). This is however far from trivial. To do so, we would have to derive a uniform
stochastic expansion of the smooth backfitting estimators in the time-varying regression model
(31), which parallels the expansion from Theorem 5 in Appendix B. (Such an expansion has not
been provided in the work of Vogt (2012).) With such an expansion at hand, one could attempt
to extend the theoretical results of this paper and to derive the asymptotic distribution of the
estimated AR parameters �̃�i(u) at a given rescaled time point u.

6.3 More efficient estimation by prewhitening techniques
We finally discuss a prewhitening strategy to improve the efficiency of our estimators. For ease of
notation, consider the simplified model

Yt,T = m𝜃(t) + m0

( t
T

)
+ m1(Xt) + 𝜀t, (33)

where Xt is real valued and {𝜀t} is an AR(1) process of the form 𝜀t = 𝜙∗𝜀t− 1 + 𝜂t with white-noise
residuals 𝜂t. Taking first-order differences in (33) and using the AR(1) equation of the error
terms yields

Yt,T − 𝜙∗Yt−1,T = m𝜃(t) − 𝜙∗m𝜃(t − 1) + m0

( t
T

)
− 𝜙∗m0

( t − 1
T

)
+ m1(Xt) − 𝜙∗m1(Xt−1) + 𝜂t. (34)

Hence, if we knew the AR parameter𝜙∗, we could prewhiten the model by forming the first-order
differences Yt,T − 𝜙∗Yt− 1,T. As a result, we would obtain a model with uncorrelated error terms
𝜂t, thus getting rid of the AR structure in the errors. Such a prewhitening strategy has been stud-
ied, for example, in the work of Xiao, Linton, Carroll, and Mammen (2003) in the context of a
nonparametric regression model with AR errors.

In our context, we could proceed as follows. To start with, we rewrite (34) as

Z∗
t,T = m0

( t
T

)
− 𝜙∗m0

( t − 1
T

)
+ m1(Xt) − 𝜙∗m1(Xt−1) + 𝜂t

with Z∗
t,T = {Yt,T − 𝜙∗Yt−1,T} − {m𝜃(t) − 𝜙∗m𝜃(t − 1)}. Because |m0( t

T
) − m0( t−1

T
)| = O( 1

T
) under

our smoothness conditions, we obtain that

Z∗
t,T ≈ (1 − 𝜙∗)m0

( t
T

)
+ m1(Xt) − 𝜙∗m1(Xt−1) + 𝜂t

=∶ g0

( t
T

)
+ g1(Xt) + g2(Xt−1) + 𝜂t,

where g0(u) = (1 − 𝜙∗)m0(u), g1(x) = m1(x) and g2(x) = −𝜙∗m1(x). Moreover, as the variables
Z∗

t,T are not observed, we replace them by the estimated versions Z̃t,T = (Yt,T − �̃�Yt−1,T) − (m̃𝜃(t) −
�̃�m̃𝜃(t−1)), where �̃� and m̃𝜃 are our estimators from Section 3. This yields the approximate model
equation

Z̃t,T ≈ g0

( t
T

)
+ g1(Xt) + g2(Xt−1) + 𝜂t.

We now estimate the functions g0, g1, and g2 by the smooth backfitting algorithm established
in Section 3.2 and denote the resulting estimators by ĝ0, ĝ1, and ĝ2. Finally, we define updated
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estimators of m0 and m1 by m̂0(u) = ĝ0(u)∕(1 − �̃�) and m̂1(x) = ĝ1(x). (More generally, we could
also define m̂1(x) = 𝛼ĝ1(x) − (1 − 𝛼)ĝ2(x)∕�̃� for some 𝛼 ∈ [0, 1].)

We conjecture that, in terms of asymptotic variance, the updated estimators m̂0 and m̂1 should
in general be more efficient than the estimators m̃0 and m̃1 from Section 3. In particular, only the
variance of the white-noise errors 𝜂t (rather than that of the AR errors 𝜀t) should show up in the
asymptotic variance of m̂0 and m̂1.
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APPENDIX A

AUXILIARY RESULTS

Before deriving our main results, we state and sketch the proofs of some auxiliary lemmas. The
first lemma concerns the uniform convergence of the kernel density estimators p̂𝑗 and p̂𝑗,k.

Lemma 1. Suppose that (H1)–(H5) hold and that the bandwidth h satisfies (H6a) or (H6b).
Then,

sup
x𝑗∈Ih

||p̂𝑗(x𝑗) − p𝑗(x𝑗)|| = Op

(√
log T

Th

)
+ o(h) (A1)

sup
0≤ x𝑗≤1

||p̂𝑗(x𝑗) − 𝜅0(x𝑗)p𝑗(x𝑗)|| = Op

(√
log T

Th

)
+ O(h) (A2)

sup
x𝑗 ,xk∈ Ih

||p̂𝑗,k(x𝑗 , xk) − p𝑗,k(x𝑗 , xk)|| = Op

(√
log T
Th2

)
+ o(h) (A3)

sup
0≤ x𝑗 ,xk≤1

||p̂𝑗,k(x𝑗 , xk) − 𝜅0(x𝑗)𝜅0(xk)p𝑗,k(x𝑗 , xk)|| = Op

(√
log T
Th2

)
+ O(h) (A4)

https://doi.org/10.1111/sjos.12342
https://doi.org/10.1111/sjos.12342
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for j, k = 0, … , d with j ≠ k, where p0(x0) = I(x0 ∈ (0, 1]), 𝜅0(v) = ∫ 1
0 Kh(v,w)dw and

Ih = [2C1h, 1 − 2C1h].

We next consider the convergence behavior of the one-dimensional Nadaraya–Watson smoothers
m̂𝑗 defined in (11) and (14). To do so, we decompose m̂𝑗 = m̂A

𝑗
+ m̂B

𝑗
into a stochastic part m̂A

𝑗
and

a bias part m̂B
𝑗
, which are defined as

m̂A
𝑗 (x𝑗) =

1
T

T∑
t=1

Kh
(

x𝑗 ,X𝑗
t
)
𝜀t∕p̂𝑗(x𝑗) (A5)

m̂B
𝑗 (x𝑗) =

1
T

T∑
t=1

Kh
(

x𝑗 ,X𝑗
t
)[

(m𝜃(t) − m̃𝜃(t)) + m0

( t
T

)
+

d∑
k=1

mk
(

Xk
t
)]

∕p̂𝑗(x𝑗) (A6)

for j = 0, … , d, where we set X0
t = t

T
to shorten the notation. For the stochastic part m̂A

𝑗
,

we have the following.

Lemma 2. Under (H1)–(H5) together with (H6a) or (H6b),

sup
x𝑗∈[0,1]

|||m̂A
𝑗 (x𝑗)

||| = Op

(√
log T

Th

)
(A7)

for all j = 0, … , d.

Lemmas 1 and 2 can be proven by small modifications of standard uniform convergence results
for kernel estimators, as given in the works of Bosq (1998), Masry (1996), or Hansen (2008). For
the bias part m̂B

𝑗
, we have the following expansion.

Lemma 3. Under (H1)–(H5) together with (H6a) or (H6b),

sup
x𝑗∈Ih

|||m̂B
𝑗 (x𝑗) − �̂�T,0 − �̂�T,𝑗(x𝑗)

||| = op(h2) (A8)

sup
x𝑗∈Ic

h

|||m̂B
𝑗 (x𝑗) − �̂�T,0 − �̂�T,𝑗(x𝑗)

||| = Op(h2) (A9)

for all j = 0, … , d, where

�̂�T,0 = − 1
T

T∑
t=1

( d∑
𝑗=1

m𝑗

(
X𝑗

t
)
+ 𝜀t

)

�̂�T,𝑗(x𝑗) = 𝛼T,0 + 𝛼T,𝑗(x𝑗) +
∑
k≠𝑗 ∫

1

0
𝛼T,k(xk)

p̂𝑗,k(x𝑗 , xk)
p̂𝑗(x𝑗)

dxk + h2 ∫ 𝛽(x)
q(x)

p𝑗(x𝑗)
dx−𝑗 .

Here, 𝛼T,0 = 0 and

𝛼T,k(xk) = mk(xk) + m′
k(xk)

h𝜅1(xk)
𝜅0(xk)

𝛽(x) =
d∑

k=0
∫ u2K(u)du

(
𝜕 log q(x)
𝜕xk

m′
k(xk) +

1
2

m′′
k (xk)

)
with 𝜅0(xk) = ∫ 1

0 Kh(xk,w)dw and 𝜅1(xk) = ∫ 1
0 Kh(xk,w)(w−xk

h
)dw.
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Lemma 3 can be proven by going along the lines of the arguments for theorem 4 in the work of
Mammen et al. (1999). To see that

�̂�T,0 = − 1
T

T∑
t=1

( d∑
𝑗=1

m𝑗

(
X𝑗

t
)
+ 𝜀t

)
, (A10)

note that

m̂B
𝑗 (x𝑗) =

1
T

T∑
t=1

Kh
(

x𝑗 ,X𝑗
t
)
(m𝜃(t) − m̃𝜃(t)) ∕p̂𝑗(x𝑗)

+ 1
T

T∑
t=1

Kh
(

x𝑗 ,X𝑗
t
)[

m0

( t
T

)
+

d∑
k=1

mk
(

Xk
t
)]

∕p̂𝑗(x𝑗)

for j = 0, … , d with X0
t = t

T
. Moreover,

1
T

T∑
t=1

Kh
(

x𝑗 ,X𝑗
t
)
(m𝜃(t) − m̃𝜃(t)) ∕p̂𝑗(x𝑗)

=
𝜃∑

t𝜃=1
(m𝜃(t𝜃) − m̃𝜃(t𝜃))

1
T

Kt𝜃 ,T∑
k=1

Kh

(
x𝑗 ,X𝑗

t𝜃+(k−1)𝜃

)
∕p̂𝑗(x𝑗)

= 1
𝜃

𝜃∑
t𝜃=1

(m𝜃(t𝜃) − m̃𝜃(t𝜃))
1

Kt𝜃 ,T

Kt𝜃 ,T∑
k=1

Kh

(
x𝑗 ,X𝑗

t𝜃+(k−1)𝜃

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

P
→ 𝜅0(x𝑗 )p𝑗 (x𝑗 ) uniformly in x𝑗

∕p̂𝑗(x𝑗) + op(h2)

= 1
𝜃

𝜃∑
t𝜃=1

(m𝜃(t𝜃) − m̃𝜃(t𝜃)) + op(h2)

uniformly in xj and

1
𝜃

𝜃∑
t𝜃=1

(m𝜃(t𝜃) − m̃𝜃(t𝜃)) = −1
𝜃

𝜃∑
t𝜃=1

1
Kt𝜃 ,T

Kt𝜃 ,T∑
k=1

(
m0

(
t𝜃 + (k − 1)𝜃

T

)
+

d∑
𝑗=1

m𝑗

(
X𝑗

t𝜃+(k−1)𝜃

)
+ 𝜀t𝜃+(k−1)𝜃

)

= −1
𝜃

𝜃∑
t𝜃=1

1
Kt𝜃 ,T

Kt𝜃 ,T∑
k=1

( d∑
𝑗=1

m𝑗

(
X𝑗

t𝜃+(k−1)𝜃

)
+ 𝜀t𝜃+(k−1)𝜃

)
+ op(h2)

= − 1
T

T∑
t=1

( d∑
𝑗=1

m𝑗

(
X𝑗

t
)
+ 𝜀t

)
+ op(h2).

Combining the above calculations with the arguments from the proof of theorem 4 in the work
of Mammen et al. (1999) yields formula (A10) for �̂�T,0.

APPENDIX B

PROOF OF THEOREM 2

In this appendix, we prove Theorem 2, which describes the asymptotic behavior of our smooth
backfitting estimators. For the proof, we split up the estimators into a stochastic and a bias part.
In Theorem 5, we provide a uniform expansion of the stochastic part. This result is an extension
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of a related expansion given in the work of Mammen and Park (2005) in the context of bandwidth
selection in additive models. The bias part is treated in Theorem 6. The proof of both theorems
requires the uniform convergence results summarized in Appendix A for the kernel smoothers
that enter the backfitting procedure as pilot estimators. Note that Theorems 5 and 6 are needed
not only for the second estimation step but also for the derivation of the asymptotics of the AR
estimators in the third step. Throughout the appendices, we use the symbol C to denote a finite
real constant, which may take a different value on each occurrence.

We now turn to the proof of Theorem 2. To start with, we decompose the backfitting estimators
m̃𝑗 into a stochastic part m̃A

𝑗
and a bias part m̃B

𝑗
according to

m̃𝑗(x𝑗) = m̃A
𝑗 (x𝑗) + m̃B

𝑗 (x𝑗).

The two components are defined by

m̃S
𝑗 (x𝑗) = m̂S

𝑗 (x𝑗) −
∑
k≠𝑗 ∫

1

0
m̃S

k(xk)
p̂k,𝑗(xk, x𝑗)

p̂𝑗(x𝑗)
dxk − m̃S

c (B1)

for S = A, B, where m̂A
k and m̂B

k denote the stochastic and the bias part of the Nadaraya–Watson
pilot estimators defined in (A5) and (A6). Moreover, m̃A

c = 1
T

∑T
t=1 𝜀t and m̃B

c = 1
T

∑T
t=1{(m𝜃(t) −

m̃𝜃(t)) + m0( t
T
) +

∑d
k=1 mk(Xk

t )}. We now analyze the convergence behavior of m̃A
𝑗

and m̃B
𝑗

separately.
We first provide a higher-order expansion of the stochastic part m̃A

𝑗
. The following result

extends theorem 6.1 in the work of Mammen and Park (2005) (in particular, their equation (6.3))
to our setting.

Theorem 5. Suppose that assumptions (H1)–(H5) apply and that the bandwidth h satisfies
(H6a) or (H6b). Then,

sup
x𝑗∈[0,1]

||||||m̃A
𝑗 (x𝑗) − m̂A

𝑗 (x𝑗) −
1
T

T∑
t=1

r𝑗,t(x𝑗)𝜀t

|||||| = op

(
1√
T

)
,

where r𝑗,t(·) ∶= r𝑗( t
T
,Xt, ·) are absolutely uniformly bounded functions with|||r𝑗,t (x′𝑗

)
− r𝑗,t(x𝑗)

||| ≤ C |||x′𝑗 − x𝑗
|||

for a constant C > 0.

Proof. As Mammen and Park (2005) have worked in an i.i.d. setting, we cannot apply
theorem 6.1 of their work directly. In what follows, we outline the arguments needed to extend
their proof to our framework. For an additive function g(x) = g0(x0) + · · · + gd(xd), let

�̂�𝑗g(x) = g0(x0) + · · · + g𝑗−1(x𝑗−1) + g∗𝑗 (x𝑗) + g𝑗+1(x𝑗+1) + · · · + gd(xd)

with

g∗𝑗 (x𝑗) = −
∑
k≠𝑗 ∫

1

0
gk(xk)

p̂𝑗,k(x𝑗 , xk)
p̂𝑗(x𝑗)

dxk +
d∑

k=0
∫

1

0
gk(xk)p̂k(xk)dxk.

Using the uniform convergence results from Appendix A and exploiting our model assump-
tions, we can show that lemma 3 in the work of Mammen et al. (1999) applies in our case. For
m̃A(x) = m̃A

0 (x0) + · · · + m̃A
d (xd), we therefore have the expansion

m̃A(x) =
∞∑

r=0
Ŝr𝜏(x),
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where Ŝ = �̂�d· · ·�̂�0 and 𝜏(x) = �̂�d· · ·�̂�1[m̂A
0 (x0) − m̂A

c,0] + · · · + �̂�d[m̂A
d−1(xd−1) − m̂A

c,d−1] +
[m̂A

d (xd) − m̂A
c,d] with m̂A

c,𝑗 = ∫ 1
0 m̂A

𝑗
(x𝑗)p̂𝑗(x𝑗)dx𝑗 . Now decompose m̃A(x) according to

m̃A(x) = m̂A(x) − m̂A
c +

∞∑
r=0

Ŝr (𝜏(x) − (
m̂A(x) − m̂A

c
))

+
∞∑

r=1
Ŝr (m̂A(x) − m̂A

c
)

with m̂A(x) = m̂A
0 (x0) + · · · + m̂A

d (xd) and m̂A
c = m̂A

c,0 + · · · + m̂A
c,d. We show that there exist

absolutely bounded functions at(x) with |at(x) − at( y)| ≤ C||x − y|| for a constant C s.t.

∞∑
r=1

Ŝr (m̂A(x) − m̂A
c
)
= 1

T

T∑
t=1

at(x)𝜀t + op

(
1√
T

)
(B2)

uniformly in x. A similar claim holds for the term
∑∞

r=0 Ŝr(𝜏(x) − (m̂A(x) − m̂A
c )). As m̂A

c =
(d + 1) 1

T

∑T
t=1 𝜀t, this implies the statement of Theorem 5.

The idea behind the proof of (B2) is as follows. From the definition of the operators �̂�𝑗 , it
can be seen that

Ŝ
(

m̂A(x) − m̂A
c
)
=

d−1∑
𝑗=0
�̂�d· · ·�̂�𝑗+1

( d∑
k=𝑗+1

S𝑗,k(x𝑗)

)
(B3)

with

S𝑗,k(x𝑗) = −∫
1

0

p̂𝑗,k(x𝑗 , xk)
p̂𝑗(x𝑗)

(
m̂A

k (xk) − m̂A
c,k

)
dxk.

In what follows, we show that the terms Sj,k(xj) have the representation

S𝑗,k(x𝑗) = − 1
T

T∑
t=1

(
p𝑗,k

(
x𝑗 ,Xk

t
)

p𝑗(x𝑗)pk
(

Xk
t
) − 1

)
𝜀t + op

(
1√
T

)
(B4)

uniformly in xj. Thus, they essentially have the desired form 1
T

∑
twt,k(x𝑗)𝜀t with some weights

wt,k. This allows us to infer that

Ŝ
(

m̂A(x) − m̂A
c
)
= 1

T

T∑
t=1

bt(x)𝜀t + op

(
1√
T

)
(B5)

uniformly in x with some absolutely bounded functions bt satisfying |bt(x) − bt( y)| ≤ C||x− y||
for some C > 0. Moreover, using the uniform convergence results from Appendix A, it can
be shown that

∞∑
r=0

Ŝr (m̂A(x) − m̂A
c
)
=

∞∑
r=0

Sr−1Ŝ
(

m̂A(x) − m̂A
c
)
+ op

(
1√
T

)
(B6)

uniformly in x, where S is defined analogously to Ŝ with the density estimators replaced by
the true densities. Combining (B5) and (B6) completes the proof of (B2).

To show (B4), we exploit the mixing behavior of the variables Xt. Plugging the definition
of m̂A

k into the term Sj,k, we can write

S𝑗,k(x𝑗) = − 1
T

T∑
t=1

(
∫

1

0

p̂𝑗,k(x𝑗 , xk)
p̂𝑗(x𝑗)p̂k(xk)

Kh
(

xk,Xk
t
)

dxk − 1
)
𝜀t.
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Then, applying the uniform convergence results from Appendix A, we can replace the density
estimators in the above expression by the true densities. This yields

S𝑗,k(x𝑗) = − 1
T

T∑
t=1

(
∫

1

0

p𝑗,k
(

x𝑗 , xk
)

p𝑗(x𝑗)pk(xk)
Kh

(
xk,Xk

t
)

dxk − 1

)
𝜀t + op

(
1√
T

)

=∶ S∗
𝑗,k(x𝑗) + op

(
1√
T

)
uniformly for xj ∈ [0, 1]. In the final step, we show that

S∗
𝑗,k(x𝑗) = − 1

T

T∑
t=1

(
p𝑗,k

(
x𝑗 ,Xk

t
)

p𝑗(x𝑗)pk
(

Xk
t
) − 1

)
𝜀t + op

(
1√
T

)
again uniformly in xj. This is done by applying a covering argument together with an expo-
nential inequality for mixing variables. The employed techniques are similar to those used to
establish the results of Appendix A.

We now turn to the bias part m̃B
𝑗
.

Theorem 6. Suppose that (H1)–(H5) hold. If the bandwidth h satisfies (H6a), then

sup
x𝑗∈Ih

|||m̃B
𝑗 (x𝑗) − m𝑗(x𝑗)

||| = Op(h2) (B7)

sup
x𝑗∈Ic

h

|||m̃B
𝑗 (x𝑗) − m𝑗(x𝑗)

||| = Op(h) (B8)

for j = 0, … , d. If the bandwidth satisfies (H6b), we have

sup
x𝑗∈Ih

||||||m̃B
𝑗 (x𝑗) +

1
T

T∑
t=1

m𝑗

(
X𝑗

t
)
− m𝑗(x𝑗)

|||||| = Op(h2) (B9)

sup
x𝑗∈Ic

h

||||||m̃B
𝑗 (x𝑗) +

1
T

T∑
t=1

m𝑗

(
X𝑗

t
)
− m𝑗(x𝑗)

|||||| = Op(h) (B10)

for j = 0, … , d.

Proof. The result follows from theorem 3 in the work of Mammen et al. (1999). Note that
(A6) is not needed for the proof of theorem 3, as opposed to the statement in the work of
Mammen et al. (1999). Thus, to make sure that theorem 3 applies in our case, we have to show
that the high-order conditions (A1)–(A5), (A8), and (A9) from the work of Mammen et al.
(1999) are fulfilled in our setting. This can be achieved by using the results from Appendix A,
in particular, by using the expansion of m̂B

𝑗
given in Lemma 3, and by following the arguments

for the proof of theorem 4 in the work of Mammen et al. (1999). To see that (B7) and (B8) have
to be replaced by (B9) and (B10) in the undersmoothing case with h = O(T−( 1

4
+𝛿)), note that

∫
1

0
𝛼T,𝑗(x𝑗)p̂𝑗(x𝑗)dx𝑗 =

1
T

T∑
t=1

m𝑗

(
X𝑗

t
)
+ Op(h2)

with 1
T

∑T
t=1 m𝑗(X𝑗

t ) = Op( 1√
T
), where 𝛼T, j(xj) is defined in Lemma 3. Using this in the proof of

theorem 3 in the work of Mammen et al. (1999) instead of ∫ 1
0 𝛼T,𝑗(x𝑗)p̂𝑗(x𝑗)dx𝑗 = 𝛾T,𝑗 + op(h2)

with 𝛾T, j = O(h2) gives (B9) and (B10).

By combining Theorems 5 and 6, it is now straightforward to complete the proof of Theorem 2.
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APPENDIX C

PROOF OF THEOREMS 3 AND 4

This appendix contains the proofs of Theorems 3 and 4, which show consistency and asymptotic
normality of the AR estimators. By far the most difficult part is the proof of asymptotic normality.
After giving some auxiliary results and proving consistency, we run through the main steps of
the normality proof postponing the major technical difficulties to a series of lemmas. The main
challenge of the proof is to derive a stochastic expansion of 1√

T
𝜕l̃T (𝜙∗)
𝜕𝜙

. This expansion is given in
Lemmas 4–7. Note that, as in Appendix B, C denotes a finite real constant that may take a different
value on each occurrence.

Auxiliary results
Before we come to the proofs, we list some simple facts that are frequently used throughout this
appendix. For ease of notation, we work with the likelihood functions

lT(𝜙) = −
T∑

t=1
(𝜀t − 𝜀t(𝜙))2

l̃T(𝜙) = −
T∑

t=1
(�̃�t − �̃�t(𝜙))2,

where 𝜀t(𝜙) =
∑p

i=1 𝜙i𝜀t−i and �̃�t(𝜙) =
∑p

i=1 𝜙i�̃�t−i. These differ from the functions defined in (16)
and (18) only in that the sum over t starts at the time point t = 1 rather than at t = p + 1.
Trivially, the error resulting from this modification can be neglected in the proofs.

To bound the distance between lT and l̃T , the following facts are useful. From the convergence
results on the estimators m̃𝜃, m̃0, … , m̃d, it is easily seen that

max
t=1,… ,T

|𝜀t − �̃�t| = Op(h). (C1)

Using (C1), we can immediately infer that

max
t=1,… ,T

sup
𝜙∈Φ

|𝜀t(𝜙) − �̃�t(𝜙)| = Op(h). (C2)

Moreover, noting that 𝜕𝜀t(𝜙)
𝜕𝜙i

= 𝜀t−i and, analogously, 𝜕�̃�t(𝜙)
𝜕𝜙i

= �̃�t−i, we get

max
t=1,… ,T

sup
𝜙∈Φ

||||𝜕𝜀t(𝜙)
𝜕𝜙i

− 𝜕�̃�t(𝜙)
𝜕𝜙i

|||| = Op(h). (C3)

Proof of Theorem 3
Let lT(𝜙) and l̃T(𝜙) be the likelihood functions introduced in the previous subsection. We
show that

sup
𝜙∈Φ

|||| 1
T

l̃T(𝜙) −
1
T

lT(𝜙)
|||| = op(1). (C4)
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This, together with standard arguments, yields consistency of �̃�. In order to prove (C4), we
decompose 1

T
l̃T(𝜙) − 1

T
lT(𝜙) into

1
T

l̃T(𝜙) −
1
T

lT(𝜙) =
1
T

T∑
t=1

(
𝜀2

t − �̃�
2
t
)
+ 2

T

T∑
t=1

(�̃�t − 𝜀t)�̃�t(𝜙)

+ 2
T

T∑
t=1
𝜀t (�̃�t(𝜙) − 𝜀t(𝜙)) +

1
T

T∑
t=1

(
𝜀2

t (𝜙) − �̃�
2
t (𝜙)

)
.

Using (C1)–(C3), it is straightforward to show that the four terms on the right-hand side of the
above equation are all op(1) uniformly in 𝜙. This shows (C4).

Proof of Theorem 4
By the usual Taylor expansion argument, we obtain

0 = 1
T
𝜕l̃T(�̃�)
𝜕𝜙

= 1
T
𝜕l̃T(𝜙∗)
𝜕𝜙

+ 1
T
̃T(�̃�, 𝜙∗)(�̃� − 𝜙∗),

where ̃T(�̃�, 𝜙∗) is the p × p matrix whose ith row is given by

𝜕2 l̃T(�̄�[i])
𝜕𝜙i𝜕𝜙T

for some intermediate point �̄�[i] between 𝜙∗ and �̃�. Rearranging and premultiplying by
√

T yields√
T(�̃� − 𝜙∗) = −

( 1
T
̃T(�̃�, 𝜙∗)

)−1 1√
T

𝜕l̃T(𝜙∗)
𝜕𝜙

.

In what follows, we show that
1
T
̃T(�̃�, 𝜙∗)

P
→H (C5)

1√
T

𝜕l̃T(𝜙∗)
𝜕𝜙

d
→N(0,Ψ) (C6)

with Ψ = 4W + 4Ω and H = −2Γp, where Γp is the autocovariance matrix of the AR process
{𝜀t}, W = (E[𝜂2

0𝜀−i𝜀−𝑗])i,𝑗=1,… ,p and Ω is given in (C15). This completes the proof.

Proof of (C5). By straightforward calculations, it can be seen that

sup
𝜙∈Φ

‖‖‖‖‖ 1
T
𝜕2 l̃T(𝜙)
𝜕𝜙𝜕𝜙T − 1

T
𝜕2lT(𝜙)
𝜕𝜙𝜕𝜙T

‖‖‖‖‖ = op(1).

Defining the p × p matrix T(�̃�, 𝜙∗) analogously to ̃T(�̃�, 𝜙∗) with l̃T replaced by lT, it is
further easy to show that 1

T
T(�̃�, 𝜙∗)

P
→H, yielding (C5).

Proof of (C6). We write

1√
T

𝜕l̃T(𝜙∗)
𝜕𝜙i

= 1√
T

𝜕lT(𝜙∗)
𝜕𝜙i

+

(
1√
T

𝜕l̃T(𝜙∗)
𝜕𝜙i

− 1√
T

𝜕lT(𝜙∗)
𝜕𝜙i

)
.
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Introducing the notation 𝜙∗
0 = −1, we obtain that

1√
T

𝜕l̃T(𝜙∗)
𝜕𝜙i

− 1√
T

𝜕lT(𝜙∗)
𝜕𝜙i

=
p∑

k=0
2𝜙∗

k

(
1√
T

T∑
t=1

(𝜀t−k − �̃�t−k)𝜀t−i

)

+
p∑

k=0
2𝜙∗

k

(
1√
T

T∑
t=1

(𝜀t−i − �̃�t−i)�̃�t−k

)

=
p∑

k=0
2𝜙∗

k

(
1√
T

T∑
t=1

(𝜀t−k − �̃�t−k)𝜀t−i

)

+
p∑

k=0
2𝜙∗

k

(
1√
T

T∑
t=1

(𝜀t−i − �̃�t−i)𝜀t−k

)
+ op(1), (C7)

where the last equality follows from the fact that (𝜀t−i − �̃�t−i)(�̃�t−k − 𝜀t−k) = Op(h2) = op(
√

T)
uniformly in t, k, and i by (C1). In what follows, we derive a stochastic expansion of the terms

QT = Q[k,i]
T ∶= 1√

T

T∑
t=1

(𝜀t−k − �̃�t−k)𝜀t−i.

By symmetry, this also gives us an expansion for Q[i,k]
T and thus, by (C7), also for the difference

1√
T
𝜕l̃T (𝜙∗)
𝜕𝜙i

− 1√
T
𝜕lT (𝜙∗)
𝜕𝜙i

.

Introducing the shorthand X0
t = t

T
, we have

𝜀t − �̃�t = (m̃𝜃(t) − m𝜃(t)) +
d∑
𝑗=0

(
m̃𝑗

(
X𝑗

t
)
− m𝑗

(
X𝑗

t
))
.

From Appendix B, we know that the backfitting estimators m̃𝑗(x𝑗) can be decomposed into a
stochastic part m̃A

𝑗
(x𝑗) and a bias part m̃B

𝑗
(x𝑗). This allows us to rewrite the term QT as

QT = QT,𝜃 +
d∑
𝑗=0

QT,V ,𝑗 +
d∑
𝑗=0

QT,B,𝑗 (C8)

with

QT,𝜃 =
1√
T

T∑
t=1
𝜀t−i

[
m̃𝜃(t − k) − m𝜃(t − k) −

d∑
𝑗=0

1
T

T∑
s=1

m𝑗

(
X𝑗

s
)]

QT,V ,𝑗 =
1√
T

T∑
t=1
𝜀t−im̃A

𝑗

(
X𝑗

t−k

)
QT,B,𝑗 =

1√
T

T∑
t=1
𝜀t−i

[
m̃B
𝑗

(
X𝑗

t−k

)
+ 1

T

T∑
s=1

m𝑗

(
X𝑗

s
)
− m𝑗

(
X𝑗

t−k

)]
for j = 0, … , d. In Lemmas 6 and 7, we will show that

QT,𝜃 = op(1) (C9)

QT,B,𝑗 = op(1) for 𝑗 = 0, … , d. (C10)

Moreover, Lemmas 4 and 5 establish that

QT,V ,0 = op(1) (C11)
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QT,V ,𝑗 =
1√
T

T∑
t=1

g𝑗
( t

T
,Xt

)
𝜀t + op(1) for 𝑗 = 1, … , d, (C12)

where g𝑗 = g[k,i]
𝑗

are deterministic functions whose exact forms are given in the statement of
Lemma 4. These functions are easily seen to be absolutely bounded by a constant independent
of T. Inserting the above results in (C8), we obtain

QT = 1√
T

T∑
t=1

[ d∑
𝑗=1

g𝑗
( t

T
,Xt

)]
𝜀t + op(1).

Using this together with (C7) yields

1√
T

𝜕l̃T(𝜙∗)
𝜕𝜙i

− 1√
T

𝜕lT(𝜙∗)
𝜕𝜙i

= 1√
T

T∑
t=1

hi

( t
T
,Xt

)
𝜀t + op(1) (C13)

with the absolutely bounded function

hi

( t
T
,Xt

)
=

d∑
𝑗=1

p∑
k=0

2𝜙∗
k

[
g[k,i]
𝑗

( t
T
,Xt

)
+ g[i,k]

𝑗

( t
T
,Xt

)]
, (C14)

where we suppress the dependence of hi on the parameter vector 𝜙∗ in the notation. As a
result,

1√
T

𝜕l̃T(𝜙∗)
𝜕𝜙i

= 1√
T

𝜕lT(𝜙∗)
𝜕𝜙i

+ 1√
T

T∑
t=1

hi

( t
T
,Xt

)
𝜀t + op(1)

= 1√
T

T∑
t=1

[
2𝜂t𝜀t−i + hi

( t
T
,Xt

)
𝜀t

]
+ op(1)

=∶ 1√
T

T∑
t=1

Ut,T + op(1),

that is, the term of interest can be written as a normalized sum of random variables Ut,T plus
a term that is asymptotically negligible. Using the mixing assumptions in (H1), it is straight-
forward to see that the variables {Ut,T ∶ t = 1, … ,T} form an 𝛼-mixing array with mixing
coefficients that decay exponentially fast to zero. We can thus apply a central limit theorem
for mixing arrays to obtain that

1√
T

𝜕l̃T(𝜙∗)
𝜕𝜙i

d
→N(0, 𝜓ii)

with 𝜓ii = limT→∞E( 1√
T

∑T
t=1 Ut,T)2. More precisely, we apply theorem 2.1 from the work of

Liebscher (1996) to the normalized sum 1√
T

∑T
t=1

Ut,T√
𝜓ii

. To do so, we need to verify conditions
(2.1)–(2.3) of this theorem. Conditions (2.2)–(2.3) are easy to see. Moreover, the Lindeberg
condition (2.1) is implied by the Lyapunov condition on p. 244 of the work of Liebscher (1996),
which is straightforward to verify in our case. With the help of the Cramer–Wold device, we
can finally show that

1√
T

𝜕l̃T(𝜙∗)
𝜕𝜙

d
→N(0,Ψ)
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with Ψ = (𝜓 ij)i, j= 1,… ,p, where Ψ = 4W + 4Ω and Ω = (𝜔ij)i, j= 1,… ,p with

𝜔i𝑗 =
1
2

∞∑
l=−∞

E

[
𝜂0𝜀−i𝜀l ∫

1

0
h𝑗(u,Xl)du

]
+ 1

2

∞∑
l=−∞

E

[
𝜂0𝜀−𝑗𝜀l ∫

1

0
hi(u,Xl)du

]
+ 1

4

∞∑
l=−∞

E

[
𝜀0𝜀l ∫

1

0
hi(u,X0)h𝑗(u,Xl)du

]
. (C15)

In order to complete the proof of asymptotic normality, we still need to show that
Equations (C9)–(C12) are fulfilled for the terms QT,𝜃 , QT,V, j, and QT,B, j. We begin with the
expansion of the variance components QT,V, j for j = 1, … , d, as this is technically the most
interesting part.

Lemma 4. It holds that

QT,V ,𝑗 =
1√
T

T∑
s=1

g𝑗
( s

T
,Xs

)
𝜀s + op(1)

for j = 1, … , d. The functions g𝑗 are given by

g𝑗
( s

T
,Xs

)
= gNW

𝑗

(
X𝑗

s
)
+ gSBF

𝑗

( s
T
,Xs

)
with

gNW
𝑗

(
X𝑗

s
)
= E−s

[
Kh

(
X𝑗

−k,X
𝑗
s
)
𝜀−i

∫ 1
0 Kh

(
X𝑗

−k,w
)

dw p𝑗
(

X𝑗

−k

)]
gSBF
𝑗

( s
T
,Xs

)
= E−s

[
r𝑗,s

(
X𝑗

−k

)
𝜀−i

]
,

where E−s[ · ] is the expectation with respect to all variables except for those depending on the
index s and the functions r𝑗,s(·) = r𝑗( s

T
,Xs, ·) are defined in Theorem 5 in Appendix B.

Proof. By Theorem 5, the stochastic part m̃A
𝑗

of the smooth backfitting estimator m̃𝑗 has the
expansion

m̃A
𝑗 (x𝑗) = m̂A

𝑗 (x𝑗) +
1
T

T∑
s=1

r𝑗,s(x𝑗)𝜀s + op

(
1√
T

)
uniformly in xj, where m̂A

𝑗
is the stochastic part of the Nadaraya–Watson pilot estimator and

r𝑗,s(·) = r𝑗( s
T
,Xs, ·) is Lipschitz continuous and absolutely bounded. With this result, we can

decompose QT,V, j as follows:

QT,V ,𝑗 =
1√
T

T∑
t=1
𝜀t−im̂A

𝑗

(
X𝑗

t−k

)
+ 1√

T

T∑
t=1
𝜀t−i

[
1
T

T∑
s=1

r𝑗,s
(

X𝑗

t−k

)
𝜀s

]
+ op(1)

=∶ QNW
T,V ,𝑗 + QSBF

T,V ,𝑗 + op(1).

In the following, we will give the arguments needed to treat QNW
T,V ,𝑗 . The line of argument for

QSBF
T,V ,𝑗 is essentially identical, although some of the steps are easier due to the properties of the

rj,s functions.
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Plugging the definition (A5) of the estimator m̂A
𝑗
(x𝑗) into the term QNW

T,V ,𝑗 , we get

QNW
T,V ,𝑗 =

1√
T

T∑
s=1

(
1
T

T∑
t=1

Kh
(

X𝑗

t−k,X
𝑗
s
)

1
T

∑T
v=1 Kh

(
X𝑗

t−k,X
𝑗
v
)𝜀t−i

)
𝜀s. (C16)

In the first step, we show that

QNW
T,V ,𝑗 =

1√
T

T∑
s=1

(
1
T

T∑
t=1

Kh
(

X𝑗

t−k,X
𝑗
s
)
𝜇t

)
𝜀s + op(1), (C17)

where 𝜇t ∶= q−1
𝑗
(X𝑗

t−k)𝜀t−i with q𝑗(x𝑗) = ∫ 1
0 Kh(x𝑗 ,w)dwp𝑗(x𝑗). To do so, decompose

1
T

∑T
v=1 Kh(x𝑗 ,X𝑗

v ) as 1
T

∑T
v=1 Kh(x𝑗 ,X𝑗

v ) = q𝑗(x𝑗) + B𝑗(x𝑗) + V𝑗(x𝑗) with

B𝑗(x𝑗) =
1
T

T∑
v=1

E
[
Kh

(
x𝑗 ,X𝑗

v
)]

− q𝑗(x𝑗)

V𝑗(x𝑗) =
1
T

T∑
v=1

(
Kh

(
x𝑗 ,X𝑗

v
)
− E

[
Kh

(
x𝑗 ,X𝑗

v
)])

.

Notice that supx𝑗∈[0,1]|B𝑗(x𝑗)| = Op(h) and supx𝑗∈[0,1]|V𝑗(x𝑗)| = Op(
√

log T∕Th). Using a
second-order Taylor expansion of f (z) = (1 + z)−1, we arrive at

1
1
T

∑T
v=1 Kh

(
x𝑗 ,X𝑗

v
) = 1

q𝑗(x𝑗)

(
1 +

B𝑗(x𝑗) + V𝑗(x𝑗)
q𝑗(x𝑗)

)−1

= 1
q𝑗(x𝑗)

(
1 −

B𝑗(x𝑗) + V𝑗(x𝑗)
q𝑗(x𝑗)

+ Op(h2)
)

uniformly in xj. Plugging this decomposition into (C16), we obtain

QNW
T,V ,𝑗 =

1√
T

T∑
s=1

1
T

T∑
t=1

Kh
(

X𝑗

t−k,X
𝑗
s
)

q𝑗
(

X𝑗

t−k

) 𝜀t−i𝜀s − QNW,B
T,V ,𝑗 − QNW,V

T,V ,𝑗 + op(1)

with

QNW,B
T,V ,𝑗 = 1√

T

T∑
s=1

1
T

T∑
t=1

Kh
(

X𝑗

t−k,X
𝑗
s
) B𝑗

(
X𝑗

t−k

)
q2
𝑗

(
X𝑗

t−k

)𝜀t−i𝜀s

QNW,V
T,V ,𝑗 = 1√

T

T∑
s=1

1
T

T∑
t=1

Kh
(

X𝑗

t−k,X
𝑗
s
) V𝑗(X𝑗

t−k)

q2
𝑗

(
X𝑗

t−k

)𝜀t−i𝜀s.

All that is required to establish (C17) is to show that both QNW,B
T,V ,𝑗 and QNW,V

T,V ,𝑗 are op(1). As
supx𝑗∈Ih

|B𝑗(x𝑗)| = Op(h2) and supx𝑗∈Ic
h
|B𝑗(x𝑗)| = Op(h), we can use Markov's inequality
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together with (H9) to get that QNW,B
T,V ,𝑗 = op(1). In order to show that QNW,V

T,V ,𝑗 = op(1), let Ev[·]
denote the expectation with respect to the variables indexed by v. Then,

|||QNW,V
T,V ,𝑗

||| = |||||| 1√
T

T∑
s=1

1
T

T∑
t=1

Kh
(

X𝑗

t−k,X
𝑗
s
)

q2
𝑗

(
X𝑗

t−k

) 𝜀t−i

×

(
1
T

T∑
v=1

(
Kh

(
X𝑗

t−k,X
𝑗
v
)
− Ev

[
Kh

(
X𝑗

t−k,X
𝑗
v
)]))

𝜀s

||||||
≤ 1√

T

T∑
t=1

|𝜀t−i|
q2
𝑗

(
X𝑗

t−k

) sup
x𝑗∈[0,1]

|||||| 1
T

T∑
s=1

Kh
(

x𝑗 ,X𝑗
s
)
𝜀s

||||||
× sup

x𝑗∈[0,1]

|||||| 1
T

T∑
v=1

(
Kh

(
x𝑗 ,X𝑗

v
)
− Ev

[
Kh

(
x𝑗 ,X𝑗

v
)])||||||

= Op

(
log T

Th

)(
1√
T

T∑
t=1

|𝜀t−i|
q2
𝑗

(
X𝑗

t−k

)) = Op

(
log T

Th

√
T
)

= op(1),

as 1√
T

∑T
t=1 |𝜀t−i|q−2

𝑗
(X𝑗

t−k) = Op(
√

T) by Markov's inequality.
In the next step, we replace the inner sum over t in (C17) by a deterministic function that

only depends on X𝑗
s and show that the resulting error can be asymptotically neglected. Define

𝜓t,s = Kh
(

X𝑗

t−k,X
𝑗
s
)
𝜇t − E−s

[
Kh

(
X𝑗

t−k,X
𝑗
s
)
𝜇t
]
,

where E−s[ · ] is the expectation with respect to all variables except for those depending on the
index s. With the above notation at hand, we can rewrite (C17) as

QNW
T,V ,𝑗 =

1√
T

T∑
s=1

(
1
T

T∑
t=1

E−s
[
Kh

(
X𝑗

t−k,X
𝑗
s
)
𝜇t
])

𝜀s + RNW
T,V ,𝑗 + op(1),

where

RNW
T,V ,𝑗 =

1√
T

T∑
s=1

1
T

T∑
t=1
𝜓t,s𝜀s. (C18)

Once we show that RNW
T,V ,𝑗 = op(1), we are left with

QNW
T,V ,𝑗 =

1√
T

T∑
s=1

(
1
T

T∑
t=1

E−s
[
Kh

(
X𝑗

t−k,X
𝑗
s
)
𝜇t
])

𝜀s + op(1)

= 1√
T

T∑
s=1

E−s
[
Kh

(
X𝑗

−k,X
𝑗
s
)
𝜇0
]
𝜀s + op(1)

=∶ 1√
T

T∑
s=1

gNW
𝑗

(
X𝑗

s
)
𝜀s + op(1)

with 𝜇0 = q−1
𝑗
(X𝑗

−k)𝜀−i and q𝑗(X𝑗

−k) = ∫ 1
0 Kh(X𝑗

−k,w)dwp𝑗(X𝑗

−k).
Thus, it remains to prove that RNW

T,V ,𝑗 = op(1). To do so, define

P ∶= P

(|||||| 1√
T

T∑
s=1

1
T

T∑
t=1
𝜓t,s𝜀s

|||||| > 𝛿
)
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for a fixed 𝛿 > 0. Then, by Chebyshev's inequality

P ≤ 1
T3𝛿2

T∑
s,s′=1

T∑
t,t′=1

E
[
𝜓t,s𝜀s𝜓t′,s′𝜀s′

]
= 1

T3𝛿2

∑
(s,s′,t,t′)∈S

E
[
𝜓t,s𝜀s𝜓t′,s′𝜀s′

]
+ 1

T3𝛿2

∑
(s,s′,t,t′)∈Sc

E
[
𝜓t,s𝜀s𝜓t′,s′𝜀s′

]
=∶ PS + PSc ,

where S is the set of tuples (s, s′, t, t′) with 1 ≤ s, s′, t, t′ ≤ T such that (at least) one index is
separated from the others and Sc is its complement. We say that an index, for instance, t, is
separated from the others if min{|t − t′|, |t − s|, |t − s′|} > C2 log T, that is, if it is further away
from the other indices than C2 log T for a constant C2 to be chosen later on. We now analyze
PS and PSc separately.

(a) First, consider PSc . If a tuple (s, s′, t, t′) is an element of Sc, then no index is separated
from the others. Because the index t is not separated, there exists an index, for example,
t′, such that |t − t′| ≤ C2 log T. Now, take an index different from t and t′, for instance,
s. Then, by the same argument, there exists an index, for example, s′, such that |s −
s′| ≤ C2 log T. As a consequence, the number of tuples (s, s′, t, t′) ∈ Sc is smaller than
CT2(log T)2 for some constant C. Using (H8), this suffices to infer that

|PSc | ≤ 1
T3𝛿2

∑
(s,s′,t,t′)∈Sc

C
h2 ≤ C

𝛿2
(log T)2

Th2 → 0.

(b) The term PS is more difficult to handle. First, note that S can be written as the union of
the disjoint sets

S1 =
{
(s, s′, t, t′) ∈ S | the index t is separated

}
S2 =

{
(s, s′, t, t′) ∈ S | (s, s′, t, t′) ∉ S1 and the index s is separated

}
S3 =

{
(s, s′, t, t′) ∈ S | (s, s′, t, t′) ∉ S1 ∪ S2 and the index t′ is separated

}
S4 =

{
(s, s′, t, t′) ∈ S | (s, s′, t, t′) ∉ S1 ∪ S2 ∪ S3 and the index s′ is separated

}
.

Thus, PS = PS1 + PS2 + PS3 + PS4 with

PSr =
1

T3𝛿2

∑
(s,s′,t,t′)∈Sr

E
[
𝜓t,s𝜀s𝜓t′,s′𝜀s′

]
for r = 1, … , 4. In what follows, we show that PSr → 0 for r = 1, … , 4. As the four
terms can be treated in exactly the same way, we restrict attention to the analysis of PS1 .

We start by taking a cover {Im}
MT
m=1 of the compact support [0, 1] of X𝑗

t−k. The elements
Im are intervals of length 1∕MT given by Im = [m−1

MT
,

m
MT

) for m = 1, … ,MT − 1 and

IMT = [1− 1
MT
, 1]. The midpoint of the interval Im is denoted by xm. With this, we can write

Kh
(

X𝑗

t−k,X
𝑗
s
)
=

MT∑
m=1

I
(

X𝑗

t−k ∈ Im
) [

Kh
(

xm,X𝑗
s
)
+
(

Kh
(

X𝑗

t−k,X
𝑗
s
)
− Kh

(
xm,X𝑗

s
))]

. (C19)
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Using (C19), we can further write

𝜓t,s =
MT∑

m=1

{
I
(

X𝑗

t−k ∈ Im
)

Kh
(

xm,X𝑗
s
)
𝜇t − E−s

[
I
(

X𝑗

t−k ∈ Im
)

Kh
(

xm,X𝑗
s
)
𝜇t
]}

+
MT∑

m=1

{
I
(

X𝑗

t−k ∈ Im
) (

Kh
(

X𝑗

t−k,X
𝑗
s
)
− Kh

(
xm,X𝑗

s
))
𝜇t

−E−s
[
I
(

X𝑗

t−k ∈ Im
) (

Kh
(

X𝑗

t−k,X
𝑗
s
)
− Kh

(
xm,X𝑗

s
))
𝜇t
]}

=∶𝜓A
t,s + 𝜓

B
t,s

and

PS1 =
1

T3𝛿2

∑
(s,s′,t,t′)∈S1

E
[
𝜓A

t,s𝜀s𝜓t′,s′𝜀s′
]
+ 1

T3𝛿2

∑
(s,s′,t,t′)∈S1

E
[
𝜓B

t,s𝜀s𝜓t′,s′𝜀s′
]

=∶ PA
S1
+ PB

S1
.

We first consider PB
S1

. Set MT = CT(log T)h−3 and exploit the Lipschitz continuity of the
kernel K to get that |Kh(X𝑗

t−k,X
𝑗
s ) − Kh(xm,X𝑗

s )| ≤ C
h2 |X𝑗

t−k − xm|. This gives us

|||𝜓B
t,s
||| ≤ C

h2

MT∑
m=1

(
I
(

X𝑗

t−k ∈ Im
) |||X𝑗

t−k − xm
|||

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

≤I(X𝑗

t−k∈Im)M−1
T

|𝜇t| + E

[
I
(

X𝑗

t−k ∈ Im
) |||X𝑗

t−k − xm
|||

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

≤I(X𝑗

t−k∈Im)M−1
T

|𝜇t| ] )

≤ C
MTh2 (|𝜇t| + E|𝜇t|) .

Plugging this into the expression for PB
S1

, we arrive at

|||PB
S1

||| ≤ 1
T3𝛿2

C
MTh2

∑
(s,s′,t,t′)∈S1

E
[
(|𝜇t| + E|𝜇t|) |𝜀s𝜓t′,s′𝜀s′ |]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
≤Ch−1

≤ C
𝛿2 log T

→ 0.

We next turn to PA
S1

. Write

PA
S1
= 1

T3𝛿2

∑
(s,s′,t,t′)∈S1

( MT∑
m=1

𝛾m

)
with

𝛾m = E
[{

I
(

X𝑗

t−k ∈ Im
)

Kh
(

xm,X𝑗
s
)
𝜇t − E−s

[
I
(

X𝑗

t−k ∈ Im
)

Kh
(

xm,X𝑗
s
)
𝜇t
]}
𝜀s𝜓t′,s′𝜀s′

]
.

By Davydov's inequality, it holds that

𝛾m = Cov
(

I
(

X𝑗

t−k ∈ Im
)
𝜇t − E

[
I
(

X𝑗

t−k ∈ Im
)
𝜇t
]
,Kh

(
xm,X𝑗

s
)
𝜀s𝜓t′,s′𝜀s′

)
≤ C

h2

(
𝛼(C2 log T)

)1− 1
q
− 1

r ≤ C
h2

(
aC2 log T)1− 1

q
− 1

r ≤ C
h2 T−C3

with some C3 > 0, where q and r are chosen slightly larger than 4
3

and 4, respectively.
Note that we can make C3 arbitrarily large by choosing C2 large enough. From this, it is
easily seen that PA

S1
→ 0.
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Combining (a) and (b) yields that P → 0 for each fixed 𝛿 > 0. As a result,

RNW,V
T,V ,𝑗 = op(1),

which completes the proof for the term QNW
T,V ,𝑗 . As stated at the beginning of the proof, exactly

the same arguments can be used to analyze the term QSBF
T,V ,𝑗 .

Lemma 5. It holds that
QT,V ,0 = op(1).

Proof. As in Lemma 4, we can write

QT,V ,0 = 1√
T

T∑
t=1
𝜀t−im̂A

0

(
t − k

T

)
+ 1√

T

T∑
t=1
𝜀t−i

[
1
T

T∑
s=1

r0,s

(
t − k

T

)
𝜀s

]
+ op(1)

=∶ QNW
T,V ,0 + QSBF

T,V ,0 + op(1).

We again restrict attention to the arguments for QNW
T,V ,0, those for QSBF

T,V ,0 being essentially the
same. Plugging the definition of m̂A

0 (x0) into the term QNW
T,V ,0 yields

QNW
T,V ,0 = 1√

T

T∑
s=1

1
T

T∑
t=1

wt,s𝜀t−i𝜀s

with wt,s = Kh( t−k
T
,

s
T
)∕ 1

T

∑T
v=1 Kh( t−k

T
,

v
T
). Now, let {𝜌T} be some sequence that slowly

converges to zero, for example, 𝜌T = (log T)−1. By Chebyshev's inequality,

P

(|||QNW
T,V ,0

||| > C𝜌T

) ≤ C
E

(
QNW

T,V ,0

)2

𝜌2
T

with

E

(
QNW

T,V ,𝑗

)2
= 1

T3

T∑
s,s′,t,t′=1

wt,swt′,s′E[𝜀t−i𝜀s𝜀t′−i𝜀s′ ].

The moments E[𝜀t−i𝜀s𝜀t′−i𝜀s′ ] can be written as covariances if one of the indices s, s′, t, or t′
is different from the others. Exploiting our mixing assumptions, these covariances can be
bounded by Davydov's inequality. With the help of the resulting bounds, it is straightforward
to show that E(QNW

T,V ,𝑗)
2∕𝜌2

T goes to zero, which in turn yields that QNW
T,V ,𝑗 = op(1).

Note that the above argument for QT,V,0 is much easier than that for QT,V, j presented in
Lemma 4. The main reason is that the weights wt,s and wt′,s′ are deterministic, allowing us to sep-
arate the expectation E[𝜀t−i𝜀s𝜀t′−i𝜀s′ ] from them. In contrast, in Lemma 4, we have the situation
that

QNW
T,V ,𝑗 =

1√
T

T∑
s=1

1
T

T∑
t=1

wt,s𝜀t−i𝜀s

with wt,s = Kh(X𝑗

t−k,X
𝑗
s )∕

1
T

∑T
v=1 Kh(X𝑗

t−k,X
𝑗
v ). In this case,

E

(
QNW

T,V ,𝑗

)2
= 1

T3

T∑
s,s′,t,t′=1

E[wt,swt′,s′𝜀t−i𝜀s𝜀t′−i𝜀s′ ]. (C20)

If the covariate process {Xt} is independent of {𝜀t}, then E[wt,swt′,s′𝜀t−i𝜀s𝜀t′−i𝜀s′ ] =
E[wt,swt′,s′ ]E[𝜀t−i𝜀s𝜀t′−i𝜀s′ ] and similar arguments as those for the term QNW

T,V ,0 yield that QNW
T,V ,𝑗 =

op(1). However, if we allow Xt and 𝜀t to be dependent, then the expectations in (C20) do not split
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up into two separate parts any more. Moreover, because the weights wt,s and wt′,s′ depend on all the
X𝑗

t for t = 1, … ,T, applying covariance inequalities like Davydov's inequality to the expressions
E[wt,swt′,s′𝜀t−i𝜀s𝜀t′−i𝜀s′ ] is of no use any more. This necessitates the much more subtle arguments
of Lemma 4.

We finally turn to the analysis of the terms QT,𝜃 and QT,B, j.

Lemma 6. It holds that

QT,𝜃 = op(1).

Proof. We write

QT,𝜃 =
1√
T

T∑
t=1
𝜀t−i

[
m̃𝜃(t − k) − m𝜃(t − k)

]
− 1√

T

T∑
t=1
𝜀t−i

[ d∑
𝑗=0

1
T

T∑
s=1

m𝑗

(
X𝑗

s
)]

=∶ QT,𝜃,a + QT,𝜃,b

and consider the two terms QT,𝜃,a and QT,𝜃,b separately. For QT,𝜃,a, we have

QT,𝜃,a =
𝜃∑

t𝜃=1

1√
T

Kt𝜃 ,T∑
r=1
𝜀t𝜃+(r−1)𝜃−i (m̃𝜃(t𝜃 − k) − m𝜃(t𝜃 − k))

=
𝜃∑

t𝜃=1
(m̃𝜃(t𝜃 − k) − m𝜃(t𝜃 − k))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=op(1)

⎛⎜⎜⎝ 1√
T

Kt𝜃 ,T∑
r=1
𝜀t𝜃+(r−1)𝜃−i

⎞⎟⎟⎠
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=Op(1)

= op(1).

Recalling the normalization of the functions mj in (4), a similar argument yields that QT,𝜃,b =
op(1) as well.

Lemma 7. It holds that

QT,B,𝑗 = op(1)

for j = 0, … , d.

Proof. We start by considering the case j ≠ 0: Let Ih = [2C1h, 1 − 2C1h] and Ic
h = [0, 2C1h)∪

(1−2C1h, 1], as defined in Theorem 2. Using the uniform convergence rates from Theorem 6,
we get

|QT,B,𝑗| = |||||| 1√
T

T∑
t=1
𝜀t−i

[
m̃B
𝑗

(
X𝑗

t−k

)
+ 1

T

T∑
s=1

m𝑗

(
X𝑗

s
)
− m𝑗

(
X𝑗

t−k

)]||||||
≤ Op(h2) 1√

T

T∑
t=1

|𝜀t−i|I (X𝑗

t−k ∈ Ih
)
+ Op(h)

1√
T

T∑
t=1

|𝜀t−i|I (X𝑗

t−k ∉ Ih
)
.

By Markov's inequality, the first term on the right-hand side is Op(h2
√

T) = op(1). Recognizing
that, by (H9), E[|𝜀t−i|I(X𝑗

t−k ∉ Ih)] ≤ Ch for a sufficiently large constant C, another appeal to
Markov's inequality yields that the second term is Op(h2

√
T) = op(1) as well. This completes

the proof for j ≠ 0.
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The proof for j = 0 is essentially the same: We have

|QT,B,0| = |||||| 1√
T

T∑
t=1
𝜀t−i

[
m̃B

0

(
t − k

T

)
+ 1

T

T∑
s=1

m0

( s
T

)
− m0

(
t − k

T

)]||||||
≤ Op(h2) 1√

T

T∑
t=1

|𝜀t−i|I ( t − k
T

∈ Ih

)
+ Op(h)

1√
T

T∑
t=1

|𝜀t−i|I ( t − k
T

∈ Ic
h

)
= Op(h2

√
T) + Op(h)

1√
T

T∑
t=1

|𝜀t−i|I ( t − k
T

∈ Ic
h

)
.

As
∑T

t=1 I( t−k
T

∈ Ic
h) ≤ CTh for a sufficiently large constant C, Markov's inequality yields that

the second term on the right-hand side is Op(h2
√

T) = op(1) as well.
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